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Abstract

A detailed analysis of discrete degassing pulses, chugs, at Sangay volcano, was performed on seismic and infrasonic records to
determine the physics of the conduit. Infrasonic chugging signals appear as repetitive pulses with small variations in amplitude and
time lag. An automated time-domain analysis was developed to measure with high precision time intervals and amplitudes at
different wave arrivals, reducing the possibility error associated with hand picking. Using this automated method, a strong positive
correlation of acoustic amplitude with repose time between individual pulses on chugging signals of Sangay was found on
numerous oscillating sequences. Frequency gliding of apparent harmonic frequencies generally trends from high to low frequency
at Sangay, in contrast to trends at Karymsky Volcano, Russia. A new description of chugging events using wavelet transform
methods, appropriate for non-stationary signals, shows subtle changes in the waveforms relate to physical processes in the volcano.
A system of non-linear feedback, based on choked flow at the vent, is postulated as the most likely source of this volcanic tremor.
© 2007 Elsevier B.V. All rights reserved.
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RE1. Introduction

Volcanic “chugging”, a specialized tremor observed
at several exploding volcanoes, is currently being used to
understand the physics and structure of volcanic conduits
during low level Strombolian style activity. Chugging
has been identifiedmost clearly at Arenal Volcano, Costa
Rica, (Benoit and McNutt, 1997; Garces et al., 1998;
Hagerty et al., 2000), and Karymsky Volcano, Kam-
chatka, (Johnson et al., 1998; Johnson and Lees, 2000;
Lees et al., 2004) as a sequence of puffing or explosions
following an initial explosion which apparently triggers
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the sequence. The quasi-periodic chugging sequence
consistently exhibits an inter-pulse period varying from
0.7–2 s and produces a series of pulses in the infrasonic
frequency band. Chugging sequences are not restricted
to the low frequency bands and can often be heard in
audible frequency ranges, although we know of no
documented cases of researchers visually observing gas
or other emissions associated directly with chugging.
This maybe due to the fact that chugging usually follows
a larger Strombolian style explosion and pulsations
that occur in the aftermath are obstructed by the larger
amounts of gas and ash remaining from the initial blast.
The individual infrasonic chugging signals appear to be
discrete and time limited, often evolving over the length
of the chugging sequence. Corresponding seismic sig-
nals, distorted because they are convolved with the in-
tervening earth structure, display more complex signals
r at Sangay, Volcano, Ecuador, J. Volcanol. Geotherm. Res. (2007),
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associated with path effect and site response, as well as
the source time function of individual tremor pulses.
Since the acoustic signals do not suffer significant
distortion from path effects, we concentrate primarily on
analysis of the infrasonic signals in this study.

From April 21–26, 1998, two portable, broadband,
seismic stations including infrasonic microphones were
deployed on the southern flanks of Sangay to monitor
activity and record infrasonic acoustic waves as well as
seismic emission from the vents (Fig. 1). During this
survey, 38 chugging signals were recorded on seismic and
acoustic stations. Johnson and Lees (2000) provide a
UN
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EC

Fig. 1. Topographic map of Sangay showing station location and vent regio
slope from the active vent. Data presented in this paper are from station San

Please cite this article as: Lees, J.M., Ruiz, M, Non-linear explosion tremo
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detailed description of the 1998 deployment and show that
chugging events of Sangay and Karymsky have, in gen-
eral, similar waveforms, although differences in occur-
rence, duration and spectral content were cited. Prior to the
1998 deployment, long-period, hybrid and tremor events
(about 5/day) were recorded in 1995 on a short period
seismic station 4.3 km from the summit. The 1995 events
exhibited characteristics similar to the 1998 recordings.
Some of the 1995 events were associated with audibly and
visually observed explosions followed by roar-like,
pulsating, rhythmic exhalations (GVN, 1996). Because
of the remoteness of Sangay, the volcano is not monitored
TE
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OO

n. Contours are drawn at 200 m intervals. Stations were located down
2 1200 m from the vent.
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regularly, although we expect this low level activity,
including pulsating tremor, is ongoing and persistent.

Sangay is the most active volcano in the Northern
Andes. It has been in a state of continuous eruption for
as long as historic accounts are available. Large eruptive
activity, including high ash columns, has been reported
on more than 16 occasions between 1728 and 1980 (J.
Egred, pers. comm.). A detailed review of the geology,
petrology and descriptions of the volcano can be found
in Monzier et al. (1999). Ongoing activity at Sangay
consists primarily of low level Strombolian explosions
with block and ash explosions, occurring, on average,
1–2 times per hour. In the past few years activity has
migrated across the vents at the summit. This paper uses
data collected solely from the 1998 deployment.

At Sangay, the summit complex of vents contains
several craters with a WSW–ENE trend, although at the
time of the field experiment, only a crater at the NE edge
was erupting. Time delays between acoustic and seismic
arrivals have a mean value of 4.02 s (σ=0.105 s) at
station SAN2, the closest to the vent. Based on the
consistency of these time delays, we are confident that
the sources studied here are derived from only one of the
active vents. Onsets of acoustic and seismic waveforms
of explosions recorded at Sangay are remarkably similar
despite the emergent nature of seismic signals (Johnson
and Lees, 2000). These observations support the
hypothesis of repeatable sources at stable locations for
this type of event at Sangay.

Of all volcanoes that exhibit “chugging” behavior
Sangay and Karymsky share seismo-acoustic character-
istics that are more similar to each other than others
studied by the authors. It is worthwhile noting that these
two volcanoes differ in their size and tectonic setting.
Sangay vents are located at 5000 m elevation as
compared to Karymsky's 1600 height. Each volcano is
conical in shape, located in a subduction zone setting,
although Sangay is situated at the southern terminus of
volcanism in the Northern Andes whereas Karymsky is
far from potentially disturbing edge effects associated
with slab termination. Each volcano exhibits an array of
whole rock geochemistry ranging from silicic to mafic
character, although for the most both volcanoes are
dominated by andesitic eruptions and lava flows (Zobin
and Levina, 1998;Monzier et al., 1999; Eichelberger and
Izbekov, 2000; Ozerov et al., 2003; Lees et al., 2004).

Analysis in the earlier paper (Johnson and Lees,
2000) used spectrogram analysis of signals to show
effects of harmonic tremor and gliding, the time-varying
fluctuations of the fundamental mode and harmonics
of chugging series. Although Sangay and Karymsky
volcanoes share physical similarities in their eruption
Please cite this article as: Lees, J.M., Ruiz, M, Non-linear explosion tremo
doi:10.1016/j.jvolgeores.2007.08.012
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activity parameters (eruptive scale time, magma viscos-
ity, volatile content, and mass flux though the vent)
chugging events at each exhibit broad differences in
duration, occurrence, and frequency content. In this
paper we extend the analyses described earlier and show
that activity at Sangay is muchmore similar to Karymsky
behavior than previously understood. Using an auto-
matic time-domain analysis of amplitude–time lapse
ratios, we show that chugging amplitudes recorded on
infrasonic sensors appear to be correlated with time be-
tween individual chugs, as observed at Karymsky in
1997 (Lees et al., 2004). This observation has important
implications for modeling volcanoes in general, regard-
ing the interaction of vent and ascending combinations
of mixed-phase mass prior to expulsion from the volcano
orifice (Ozerov et al., 2003). Our analysis is related to the
non-linear analyses of chaotic processes, although in this
study we base our conclusions on much more detailed
observations of the chugging time series. Finally we
present a new description of chugging events using
wavelet transforms methods appropriate for non-station-
ary signals.

2. Data analysis

Eleven episodes of high signal–noise sequences
of chugging were isolated at Sangay in the period of
observation in 1998. These were extracted from the full
data set and analyzed as described below. At least two
sequences were complex series known as ‘intermittent
chugging’(Lees et al., 2004), i.e. sequences that were
modulated by a much longer wavelength process, so
those were broken down and investigated in parts. For
each of the selected episodes, detailed analysis of the
time intervals between individual chugs and the am-
plitudes of individual chugs was recorded (Fig. 2). To be
as consistent as possible, automation of time and ampli-
tude determinations was implemented. All time picks
were made by selecting the maximum amplitude in a
window surrounding each chug signal on the raw
acoustic records. This approach eliminated the possibil-
ity of bias associated with decisionmaking by an analyst.
To provide estimates of the error in the automated picks,
we used the following procedure: after arrival times were
determined, a small window surrounding the maximum
of each chug was selected and low-pass filtered using a
Gaussian Nadaraya–Watson kernel regression smoother
with central frequencies at 6 and 2 Hz respectively
(R Development Core Team, 2006). The difference
between the 2 Hz filtered maximum arrival-time/
amplitude versus the 6 Hz arrival-time/amplitude repre-
sents an estimate of the quality of the arrival time
r at Sangay, Volcano, Ecuador, J. Volcanol. Geotherm. Res. (2007),
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Fig. 2. Chugging Event #4. Each pulse is measured at its peak and errors of timing and amplitudes are estimated by comparing estimates with filtered
versions of the pulses. Linear regression of time interval and amplitude is computed for each chugging sequence separately and error estimates are
used to weight the linear models. The slope for Event 4 is 2.6 Pa/s with a correlation coefficient of 0.84. The number labels are the sequence of each
pulse in the chugging series such that larger indices arrive later in time.
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determination (Fig. 3). Uncertainty estimates rely on the
choice of smoothing parameters, naturally, so an effort
was made to design the filters that increase error bars
when the peak region of the chug ismulti-modal, or noisy.
This method seemed to provide reasonable error bounds
UN
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EC

Fig. 3. Example chug illustrating estimates of error in time and amplitude.
surrounding the chug pulse. The pulse is smoothed at two different frequenc
arrival time of each (plus symbols) provides an automated method to extract th
the linear regression presented in Fig. 2.

Please cite this article as: Lees, J.M., Ruiz, M, Non-linear explosion tremo
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in amplitude and time on the individual chugs, with
maxima of 4.9% and 1.7% error variation, respectively.

The advantage of measuring time intervals so pre-
cisely over conventional spectrum methods is clear:
estimates of frequency spectra generally mix signals over
Arrival times are estimated by the peak amplitude in a short window
ies (dashed, grey lines) and the difference between the amplitude and
e uncertainty of times and amplitudes. Uncertainties are used to weight
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several wavelengths to extract the frequency–amplitude
information (Lees et al., 2004). The time-domain
approach taken here preserves details of the structure of
the sequence that cannot be obtained using a spectro-
gram. The apparent relation between amplitude and time
interval between chugs is further obscured by inconsis-
tent estimation of the time arrivals, as would be the case if
arrivals were determined by eyeball estimation. By de-
veloping an automated algorithm to extract this informa-
tion, the method can be applied to and compared with
other datasets with general reliability.

3. Amplitude–time lapse analysis

We isolated eleven sequences of chugging activity
and applied the automated time-domain analysis de-
scribed above. Uncertainties in pulse arrival-time and
amplitude estimates were used to weight linear regres-
sions between lag (lapse) times and amplitudes. In nearly
all the chugging sequences studied, there is a statistically
significant positive correlation between amplitude and
time interval between chugs (Fig. 4). While this ob-
servation is not universal, i.e. there are sequences which
do not show a strong correlation, in those instances
UN
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EC

Fig. 4. Summary of regression analyses. Error bars are 95% confidence bound
(lower number) and shows the number of chugs per sequence (upper numer
sequences of intermittent chugging that were broken down into subsets and an
positive correlation between pulse interval time and amplitude.

Please cite this article as: Lees, J.M., Ruiz, M, Non-linear explosion tremo
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where chugging is relatively simple, the rule holds.
Occasionally chugging sequences are complex, i.e. they
are modulated by a longer period envelope that regulates
amplitude fluctuations. In these cases, the chugging
series were broken down and analyzed individually. The
mean slope for sequences which had a statistically
positive slope was 2.2 Pa/s. We note that accurate and
stable calibration of the Venema electret microphone
sensitivity is not available for data recorded at Sangay in
1998 (Johnson et al., 2003). In this paper we used an
estimated 30 mV/Pa to convert volts to pressure. The
critical observation here is the positive relation between
amplitudes and time lags whereas the absolute value of
the slope is of lesser concern.

4. Frequency gliding

Frequency gliding occurs when the fundamental and
corresponding harmonic frequencies fluctuate in time
(Benoit and McNutt, 1997; Garces et al., 1998; Hagerty
et al., 2000; Lees et al., 2004). At Langila volcano tremor
related to puffing sounds of emissions exhibited frequen-
cy variations greater than 50% over a time span of about
1 min (Mori et al., 1989). The tremor at Langila had an
TE
D

s formally estimated from linear regression. Each sequence is numbered
al). Sequence number 4 is presented in Fig. 2. Dashed boxes enclose
alyzed individually. The majority of chugging events at Sangay show a

r at Sangay, Volcano, Ecuador, J. Volcanol. Geotherm. Res. (2007),

http://dx.doi.org/10.1016/j.jvolgeores.2007.08.012


228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

6 J.M. Lees, M. Ruiz / Journal of Volcanology and Geothermal Research xx (2007) xxx–xxx

ARTICLE IN PRESS
increasing period for increasing amplitudes (Julian,
1994). Frequency increments of about 100% over about
10 min have been noted at Sakurajima volcano (Kamo
et al., 1977). At Sangay we found that gliding often trends
from higher to lower frequencies (Fig. 5), although
occasionally chugging sequences appear to have the
opposite trend. In some cases, however, gliding shows an
increase and later a decrease in frequency over the time
span of the sequence. Where chugging is interpreted as a
superposition of standing waves, gliding has been viewed
as a time varying change in the physical medium (for
example, density fluctuations) which produce a drifting of
the fundamental frequencies. Benoit and McNutt (1997)
attributed frequency variations to changes in the dimen-
sions ofmagma bodies or gas content. In linear oscillators,
damping lowers the natural frequency of oscillation, in
non-linear oscillators, damping can also have the opposite
effect (Julian, 2000).

It has been established that volcano chugging cannot
be modeled by a simple linear system of superposed
oscillations (Lees et al., 2004). Since observations at
Sangay appear to corroborate the conclusion that the
underlying physical mechanism is non-linear, we propose
that the observed frequency gliding is related to feedback
loops in the vent-gas storage system near the opening of
the conduit. As chugging progresses, the aperture where
gasses are released undergoes slight modification,
UN
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Fig. 5. Gliding interval time between chugs versus time from chugging sequenc
so the frequency decreases over the 60 s span of the chugging event. The s
frequencies and particle motion vary. The dashed line is a smoothed represent

Please cite this article as: Lees, J.M., Ruiz, M, Non-linear explosion tremo
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coupled with fluctuations of internal pressures within
the uppermost conduit. In nearly all cases where there was
significant correlation between amplitude and interval
time, higher amplitude pulses have longer times. This
implies that the mechanism for releasing gasses is related
to an increase of pressure associated with a larger volume
of gas in the conduit chamber.

We found no correlation between isolated explosion
event amplitude (non-chugging or chugging) and lapse
time since the previous event. The physical mechanisms
that control initial or isolated blasts are most likely dif-
ferent from those governing chugging signals. During
the 1998 field deployment, initial blasts at Sangay
occurred once per hour, on average, producing hundreds
of events (over this same period fewer than 20 sequences
of chugging were observed, 11 of which are discussed
here). All reports of activity from Sangay suggest that
this activity has been ongoing since 1628 (Monzier et al.,
1999). This is in marked contrast to Karymsky where
Strombolian activity is intermittent with a decadal cycle
that includes vigorous explosion cycles during the active
phases. In spite of the differences in physical structure
and geologic composition, the two volcano chugging
sequences are remarkably similar in frequency content
and amplitude range. We speculate that the physical
processes governing all chugging signals is a feedback
loop controlled by the geometry of the vent opening and
T

e presented in Fig. 2. In this example the period between chugs increases,
haded region corresponds to time periods discussed in the text where
ation of the points. Error bars for the timing are estimated as in Fig. 3.
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the flux of gasses near the surface. For chugging at
Karymsky and Sangay volcanoes parameters controlling
gas flux appear to be similar. The vent at Karymsky
during the times of observation was on the order of tens
of meters with debris packing into the crater following
each explosion. The aperture extent of the active vent at
Sangay in 1998 is unknown because visual observations
could not be made at that time. Gliding provides in-
formation into the internal dynamics of the conduit
physical state and we next invoke powerful processing
tools to investigate it further.

5. Wavelet transforms

Application of the wavelet transform on the chugging
sequence shown above reveals internal temporal varia-
tion of the time history of the tremor. In this case we use
the Morlet wavelet (Carmona et al., 1998; Addison,
2002; Lees, 2005) as it is appropriate for Ricker type
UN
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Fig. 6. Wavelet transform of chugging sequence #4. The figure shows all fou
transform is designed to accentuate time varying frequency changes during th
is based on a cross-correlation and has no units.
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wavelets often observed in seismic records. The mathe-
matical form of the Morlet wavelet is a sinusoidal
oscillation modulated by a Gaussian window function:

w
t � b
a

� �
¼ 1

p1=4
ei2pf0½ðt�bÞ=a�e�

1
2½ðt�bÞ=a�2 ð1Þ

where t is time, a is a scaling factor, b is shifting pa-
rameter, f0 is the center frequency for the wavelet, and i
is the complex number.

An example wavelet transform is presented in Fig. 6
with scale factor 1 and center frequency 5. The Morlet
wavelet used in this study is designed so that the first two
side lobes of the wavelet are approximately half the
amplitude of the central peak (Carmona et al., 1998;
Addison, 2002). We present the wavelet transforms of all
four recorded signals, three seismic and one infrasound.
Details of the wavelet transform of the infrasonic channel
from Fig. 6 are presented in Figs. 7 and 8.
TE
D
P

r channels: one infrasound and three-component seismic. The wavelet
e sequence of chugging tremor. The amplitude of the wavelet transform
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The wavelet transform can illuminate transient fea-
tures in the signal that standard spectrograms, commonly
used in seismology, do not show. In the example pre-
sented in Fig. 7 the wavelet transform accentuates
individual pulses and relates information on how these
pulses change with time and frequency. By focusing on
details of the wavelet transform we can narrow down
specific temporal variations in the chugging sequence.
Consider two frequencies 3.4 Hz and 2.4 Hz in Fig. 7.
Near time 3055 s there appears a slight bifurcation of the
UN
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EC

Fig. 8. Two rows of the infrasound wavelet transform extracted from Fig. 7 at
delay of 1.3 is estimated.
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series of 2.4 Hz wavelets. If we extract the rows of the
wavelet transform at these frequencies (Fig. 8) the struc-
ture become more apparent: around 3055 s the 2.4 Hz
signal is time shifted relative the 3.4 Hz wave by about
1.3 s, on average. This frequency time shift represents a
new input at the source region where the infrasound
pulses originate. Prior to 3055 the two frequencies are
in phase, and then, rather abruptly, they are tuned out
of phase.
2.4 and 3.4 Hz. The marked peaks are measured in time and an average
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Analysis of particle motion during chugging se-
quences is not commonly used, but in this case of
chugging it reveals an interesting result. We speculate that
particle motion orientation recorded at Sangay in 1998 is
most heavily influenced by source effects rather than a
path effects, i.e. waves arriving at the station are polarized
at the source due to vent characteristics such as geometry,
viscosity, or even directional and temporal source vari-
ations which produce peculiar radiation patterns.

To analyze temporal variations in chugging particle
motion, the three component seismic sequence is broken
down into windows of 100 samples long (100/125 s) and
eigenvectors of the point clusters for each window are
calculated as the window migrates along the trace with
75% overlap (Fig. 9, see (Lees, 2004) for a description of
the methods). Measures of cluster quality are monitored
along with the incident angle and azimuth of arrival. In
this example (Fig. 9) there is good coherence in the initial
part of the chugging sequence, during the first 20 s (time
3000–3020 s), where the apparent motion of the particles
at the seismometer is apparently 90° rotated from the
UN
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Fig. 9. Particle motion of chugging sequence. The upper panel shows the infra
shows the azimuthal direction of particle motion estimated over moving wi
directions are derived from eigenvalue decomposition of velocity vectors, follo
circles) exhibits a significantly different orientation of particle motion than the
zone where the frequencies are shifting as described by the infrasound wavele
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direction to the vent (Fig. 10). Then, at around 3025 s
into the start of the sequence, a higher frequency wave
arrives at the station and the particle motion shifts
approximately 30° northward. We note that this effect is
accompanied by a slight change in the acoustic signal,
but a more significant change occurs at around time
3055 s where lower frequencies appear to shift as il-
lustrated in the previous paragraph (Figs. 7, 8, 9 and 10).
It is clear that the dynamics of the chugging sequence
varies over the time duration of the tremor, representing
possible variations in explosion sources at the vent. The
fact that the acoustic record changes in coordination with
the seismic particle motion, suggests that particle motion
variations originate at the source, since the acoustic
waves do not share the same path effects as the seismic
waves. A simple model consisting of superposition of
standing waves in a column of rising magma or in a
relatively shallow, mixed-phase conduit cannot explain
these variations in behavior without invoking changes of
the conduit geometry and/or physical characteristics
over time periods of seconds or fractions thereof. On the
TE
D

sound and the three components of the particle motion. The lower panel
ndows of 100 samples (sample rate=0.008 s) with 75% overlap. The
wed by projection onto the horizontal plane. The left box (3000–3025 s,
central box. The central box (3025–3055 s, triangles) corresponds to the
t analysis.
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other hand if the extrusion of gases changes directions
because of adjustments at the vent during the course of a
chugging sequence, we may speculate that the shear
waves arriving at the station rotate their orientation,
producing the observed polarization shift.

6. Discussion

Lees et al. (2004) found a strong, apparently linear,
correlation between chugging time intervals and corre-
sponding signal amplitudes at Karymsky Volcano. Visual
observations of Karymsky Volcano explosions in 1997/
1998 suggest that, during chugging activity, Karymsky
produced gas/ash explosions from a single eruption vent
at the summit. The lone vent acted as the sole source of
infrasonic activity, both for chugging and non-chugging
events. Video recordings of explosions at Karymsky in
1998 showed that at least two, distinct and separate
plumes were evident during explosions (Johnson, in
press). The plumes appeared to emanate from the same
vent nearly simultaneously; a smaller, lighter colored
cloud along with a darker, much larger plume of ash,
pyroclastics and debris. We presume that the smaller,
white plume consisted primarily of water vapor. During
the 1998 deployment at Sangay, only one vent was
observed and the presence or absence of multiple plumes
is unknown.
Please cite this article as: Lees, J.M., Ruiz, M, Non-linear explosion tremo
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Using a new technique in the time domain, a statis-
tically significant positive correlation between time delays
and pressure amplitudes of chugging events was found on
Sangay's infrasound data. This fact shows that chugging
events at Karymsky and Sangay have more similarities
than previously was noticed. The fact that amplitudes
appear to be correlated with time intervals between chugs
is significant. It suggests that it is highly unlikely that the
process governing the chugging phenomenon can be
modeled as a (simple, linear) superposition of waves in
the conduit. This observation cannot be easily deduced
from standard spectral analysis of the chugging se-
quences. Frequency gliding has been observed at Arenal
volcano, although the relation of amplitude to pulse
frequency was not readily observed until it was noted at
Karymsky (Lees et al., 2004). In this study we introduce
the wavelet analysis to probe the time–frequency relation
of the chugging sequences because standard spectrogram
analysis smears information in time. The wavelet analysis
has better time resolving power than traditional spectro-
grams and thus shows details of frequency evolution.
During the sequence where frequency splitting and abrupt
changes occur over time spans of seconds (or less) the
wavelet transform provides insight into time variations of
the volcanic explosion source.

Konstantinou and Lin (2004) found that chugging
signals from Sangay have a low correlation dimension
(1.8–2.4) and a Lyapunov exponent in the range of
0.013–0.022. From these results, they inferred that
chugging events can be modeled by non-linear processes
(positive Lyapunov exponent) with a low number of
degrees of freedom given by a small fractal dimension.
Theoretical process mechanisms can be generated by
simple sets of non-linear, differential equations such as
the Van der Pol or Duffing equations (Julian, 2000;
Konstantinou and Schlindwein, 2003). While these
equations retain some of the very gross characteristics
of the tremor observed we have found simulations based
on these simple assumptions seriously lacking.

A variety of non-linear, physical models have been
postulated for harmonic tremor on Strombolian style
explosive volcanoes, including: a) fluid flow through
cracks (Julian, 1994, 2000); b) pressure cooker model
(Lees and Bolton, 1998); and c) generation of Von
Karman vortices related to obstructions in a conduit
(Hellweg, 1999, 2000) and crack vibrations (Chouet,
1986, 1988; Chouet et al., 2003). For now, we cannot
speculate on the appropriateness of such models for
illuminating the observations reported here, although it
should be noted that it is possible to design sets of
differential equations that produce sequences of signals
similar to those discussed here. Lees and Bolton (1998)
r at Sangay, Volcano, Ecuador, J. Volcanol. Geotherm. Res. (2007),
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proposed a set of non-linear differential equations re-
lating choked flow with feedback mechanisms, although
these models are still being explored to determine the
best parameter estimates and their relation to physical
volcanoes. Details of time series produced by these
sequences of pulsations will have to be recorded with
high fidelity at numerous stations before we can for-
mulate reliable inverse procedures to determine the un-
derlying physical processes. Furthermore, it is most
probable that non-uniqueness of parameters sets defining
small sets of differential equations proposed to simulate
these phenomena will preclude a single, geologically
significant, solution. Cross-disciplinary observations
(thermal, visual, chemical, etc…) may offer hope to
narrow model space of parameter sets that potentially
satisfy the seismo-acoustic data, and some efforts along
these lines are currently being investigated, although
concrete results are not available as yet (Harris et al.,
2003; Neuberg, 2006).

The correlation of particle motion variations and in-
frasonic frequency shifting suggests that the underlying
geometry of the source is changing over the time span of
one chugging event. At this point we do not have enough
constraints to determine if changes in the source occur at
depth (tens to hundreds of meters) or at the surface
where the infrasound is generated. We speculate that it is
unlikely that the variations observed here are produced
by deep sources in the vent. Rather we suggest that
perturbations shown above most probably result from
rapid modifications of the near surface vent during the
evolution of the chugging sequence. The modification
maybe a slight opening or closing of the aperture or
ablation of the edges of the vent which drives the fre-
quency modulation and longer term gliding. A simple
feedback mechanism that controls the pressure in the
near surface conduit and the aperture of the vent can
provide the necessary non-linear behavior required by
the amplitude/repose time phenomena shown in Fig. 5.
This model has been proposed by others (Johnson et al.,
1998; Lees et al., 2004), although a strict mathematical
formulation has not been worked out formally (Lees and
Bolton, 1998).

7. Conclusions

By working in the time domain to estimate arrival
times of pulses during tremor events we have reduced the
error and increased the precision of time–amplitude ob-
servations of explosions at Sangay and Karymsky
volcanoes. Sangay volcano exhibits quasi-periodic se-
quences of pulses following explosions which are known
as chugging. Numerous sequences were analyzed and
Please cite this article as: Lees, J.M., Ruiz, M, Non-linear explosion tremo
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shown to have a statistically significant positive correla-
tion between amplitude and interval repose time. The
strong correlation between pulse amplitude and repose
time interval suggests feedback mechanisms and chaotic
behavior similar to other volcanological phenomena
where fluids are assumed to flow through narrow conduits
and excite non-linear oscillatory vibration. The close
association of particle motion variations and frequency-
phase shifts estimated from wavelet transforms indicates
modifications of the source/vent geometry rather than a
deep seated variation. At the interface between the vol-
cano and the atmosphere this phenomena leads to audible
chugging that is prominent in the infrasonic bandwidth
(0.7–2 Hz) and can be modeled as choked flow from a
relatively shallow conduit chamber.
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