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0.1 Directional Data: Circles

0.1.1 Statistics using circular or directional data

Since data in the earth sciences often involve spatially distributed information on the directionality
of a particular property it is important for researchers in the geological sciences to have a firm grasp
on the differences these data have with other scalar data. Advanced treatments of circular statistics
can be found in [Fisher, 1993] and [Mardia, 1972].

Directions in the earth sciences arise in analysis of spatially oriented observations such as fault
strikes, striations, mineral deformation or other data concerned with bearing. It is common for
the uninitiated to make the mistake that angles can be treated like other Cartesian parameters.
Angles are commonly recorded as data points in units of degrees, although these are not very
useful for typical calculation. As a first step angles should transformed into radians using the
conversion factor π/180 radians/degree. Once angles have been converted, they can be transformed
to Cartesian coordinates using

x = A cos(α)

y = A sin(α) (0.1)

where the angle α increases from the x (bottom) axis counter-clockwise and A is the radius of the
circle, here set to one. In many geological situations, however, angles are measured from the North
clockwise. In that case, given data in degrees, we must reverse the direction and rotate by 90◦.

x = A cos(90 − α◦)

y = A sin(90 − α◦) (0.2)

Again, angles presented in degrees and must be converted to radians prior to using trigonometric
functions in R.

For example, if we have a set of angles a, provided as an example in Mardia(1972, p.22),

A = 1

## a=c(41.9,31.7,48.2,42.4,32.8,36.0,28.6,33.2,34.3,32.5)

### data from Mardia(1972) p 22

a = c(43,45,52,61,75,88,88,279,357)

x = A*cos((a)*pi/180)

y = A*sin((a)*pi/180)

n = length(a)

Mx = mean(x)

My = mean(y)

Mdir = (atan2(My, Mx))*180/pi

Rbar = sqrt(Mx^2+ My^2)
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## draw a circle

i=pi*(0:360)/180

cx = A*cos(i);

cy = A*sin(i);

which can be plotted with the code:

plot(cx, cy, type='n', asp=1, ann=FALSE, axes=FALSE)

lines(cx,cy)

points(x,y)

segments(0,0, x,y, col=grey(.7))

arrows(0,0, Rbar*cos(Mdir*pi/180 ) , Rbar*sin(Mdir*pi/180 ), col=grey(0))

Figure 1: Circular plot of directions for FINLAND data set

For directional data a summary direction can be extracted by adding the x and y coordinates
because they are Cartesian. If the directions are uniformly scattered, the resultant direction will be
small. On the other hand if the directions cluster in a dominant orientation, the summed vectors
will add constructively and the resultant will be large. As an example we use the data for a set of
glacial striation directions from Finland (Davis, 2003, p.317). The average direction will be oriented
towards the mean x and y values.

a=c(23,27,53,58,64,83,85,88,93,99,100,105,113,113,114,117,121,123,125,

126,126,126,127,127,128,128,129,132,132,132,134,135,137,144,145,145,146,153,155,155,
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155,157,163,165,171,172,179,181,186,190,212)

x = A*cos((90-a)*pi/180)

y = A*sin((90-a)*pi/180)

Mx = mean(x)

My = mean(y)

Mdir = (pi/2-atan2(My, Mx))*180/pi

The mean direction of this data is thus α =129◦. This can be added simply to the plot of the
original data,

plot(cx, cy, type='n', asp=1, ann=FALSE, axes=FALSE)

lines(cx,cy)

points(x,y)

segments(0,0, x,y, col=grey(.8))

arrows(0, 0, Mx, My, lwd=2)

Figure 2: FINLAND data set with mean direction shown

The mean resultant length is often denoted R̄ and is used in a variety of quantitative measures
of the circular data set. for example, the circular variance is estimated by

S = 1 − R

n
= 1 − R̄ (0.3)

which in our case is,
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R = sqrt(sum(x)^2+sum(y)^2)

Rbar = sqrt(Mx^2+ My^2)

S = 1 - Rbar

To perform hypothesis testing with circular data we use the von Mises distribution, or the
circular normal distribution. This distribution is characterized by two parameters, κ and µ and is
given by,

f(x | µ, κ) =
eκcos(x−µ)

2πI0(κ)
(0.4)

To illustrate this distribution with different levels of compaction κ we can generate distributions
using R,
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Figure 3: Probability Density Function for von Mises Distribution

The CRAN distribution site has a package called CircStats that has many of the functions used
in analyzing circular data. Given a calculated R̄ value one can get an estimate of the κ by loading
the CircStats package and calling the est.kappa function.

library(CircStats)

kappa = est.kappa(a*pi/180)

mu = Mdir*pi/180
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If the data were extracted from a uniform distribution we would expect the value of R̄ to be small.
A test due to Lord Rayleigh can be accomplished be comparing R̄ to critical values for different
P-values. A table of P-values can be found in Davis (Table A10) or Mardia (Appendix 2.5). Here
we provide an approximation using a method devised by Wilkie(1983). The table data are recreated
using R:

pees = c(0.1, 0.05, 0.025, 0.01)

n = c(4:25, 30, 35, 40, 45, 50)

On = 1/n

TAB = matrix(ncol=length(pees)+1, nrow=length(n))

TAB[,1] = n

for(i in 1:length(pees))

{

P = pees[i]

K = -log(P) - ( (2*log(P) + (log(P)^2) )/(4*n))

TAB[,i+1] = sqrt(K*On)

}

colnames(TAB)<-c("n",pees)

print(TAB)

n 0.1 0.05 0.025 0.01

[1,] 4 0.7515051 0.8380480 0.9082263 0.9817512

[2,] 5 0.6734610 0.7545310 0.8218730 0.8950204

[3,] 6 0.6155695 0.6917903 0.7560085 0.8271724

[4,] 7 0.5704262 0.6424505 0.7037021 0.7724448

[5,] 8 0.5339490 0.6023408 0.6608886 0.7271740

[6,] 9 0.5036789 0.5689047 0.6250175 0.6889536

[7,] 10 0.4780342 0.5404774 0.5944012 0.6561432

[8,] 11 0.4559456 0.5159227 0.5678738 0.6275859

[9,] 12 0.4366606 0.4944347 0.5446013 0.6024414

[10,] 13 0.4196323 0.4754243 0.5239693 0.5800831

[11,] 14 0.4044523 0.4584497 0.5055145 0.5600340

[12,] 15 0.3908088 0.4431716 0.4888793 0.5419235

[13,] 16 0.3784589 0.4293253 0.4737836 0.5254589

[14,] 17 0.3672104 0.4167003 0.4600039 0.5104058

[15,] 18 0.3569087 0.4051270 0.4473596 0.4965739

[16,] 19 0.3474280 0.3944672 0.4357030 0.4838068

[17,] 20 0.3386647 0.3846066 0.4249120 0.4719748

[18,] 21 0.3305328 0.3754503 0.4148845 0.4609693

[19,] 22 0.3229599 0.3669181 0.4055346 0.4506983

[20,] 23 0.3158847 0.3589422 0.3967894 0.4410839

[21,] 24 0.3092550 0.3514648 0.3885863 0.4320590

[22,] 25 0.3030259 0.3444359 0.3808716 0.4235657

[23,] 30 0.2766935 0.3146890 0.3481840 0.3875217
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[24,] 35 0.2562147 0.2915194 0.3226842 0.3593437

[25,] 40 0.2396993 0.2728135 0.3020737 0.3365333

[26,] 45 0.2260145 0.2573005 0.2849666 0.3175783

[27,] 50 0.2144342 0.2441646 0.2704710 0.3015024

Once a significance level has been chosen, it can be compared to values in the table to determine the
critical points for rejection. As shown in Davis, since R̄ =0.8 is greater than the critical value from
the table R̄50 5% =0.244. Thus at 5% significance we reject the null hypothesis that the concentration
parameter is zero and conclude that the data are not uniformly distributed.

0.1.2 Rose Diagrams

Rose diagrams are often used to represent graphically circular distributions of data in a way that is
analogous to histograms. Serious problems can arise resulting in misleading readers if rose diagrams
are done improperly. If the petals of a rose diagram are plotted with radii proportional to the number

of samples in the bin, as opposed to the area of the petal plotted proportional to the number or
percentage of the elements between two angles, the rose diagram will appear biased, or weighted
improperly. To illustrate this we use a set of data from Davis called FINLAND.txt using the
program rose.R supplied in the appendix.
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Figure 4: Simple Rose Diagram

Note that the scale is not linear. In the example and code provided here it is worthwhile noting
that the rose diagram can be scaled and plotted anywhere on an existing plot made in R. For
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example, if a map is plotted and circular rose diagrams are used to illustrate the spatial variation
of orientations it is easy to create a complex plot of both map and roses together.
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Figure 5: Geographic distribution of Rose diagrams

Here one can easily see the spatial variation of directional data across a field site. For each
location a statistical test can be performed and confidence can be used to modify the roses by color
or other method.
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0.2 Data distributed on Spheres

Analysis of data on the sphere is critical to geological sciences for an obvious reason: the Earth can
be approximated simply as a sphere to first order. Beyond this important motivation it spheres
are used in geological sciences to represent the distribution of three-dimensional orientations and
directions, the distribution of planar surfaces and, of course, as simplification of tensors (focal
mechanisms).

This chapter includes analysis of upper and lower hemispheric projections of fault information,
focal mechanisms, stress distributions and associated statistical tests. Examples from paleomagnetic
data will be presented and rotations on the sphere will be discussed. This chapter ties in well with
the section on Matrices. An excellent advanced book on this topic is [N. I. Fisher and Emgleton,
1987] and [Mardia, 1972].

0.3 Spherical Coordinate Systems

Geometry on the sphere is critical for Earth Science data analysis for obvious reasons, namely that
the Earth is approximated to first order by a sphere. Locations on the planet are referenced via
latitude (Lat) and longitude (Lon), and calculations related to positioning or distribution of proper-
ties on the globe are essential. Furthermore, many applications involving spherical distributions are
common in structural geology and geophysics, where faults are represented as poles on and earth-
quake ruptures are modeled as double couple focal mechanisms using spherical relations between
fault and auxiliary planes.

We first establish the relationship between Cartesian coordinate system (x, y, z) and spherical
coordinate system (r, φ, θ). For many applications the mathematical definition stems from taking
the x-axis on the page to the right, the y-axis is up, and the z-axis is out of the page. In that case r
is the radius of the vector, φ is the angle from the zenith along the z-axis, and θ is the angle of the
projection of the vector in the x-y plane with the x axis. The relationship between the Cartesian
and the spherical coordinates is expressed as a transformation,

x = r cos(θ) sin(φ)

y = r sin(θ) sin(φ) (0.5)

z = r cos(φ)

where the inverse relationships are,

r =
√

x2 + y2 + z2

φ = cos−1(z/r) (0.6)

θ = tan−1(y/x)
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These are illustrated in the following diagram where the angles and the Cartesian axes are laid
out. As noted earlier, it is conventional in geographical applications to use North facing up on the
page. In that case the θ should be adjusted to represent increasing angle clockwise, or θ′ = 90 − θ
when θ is in degrees. Also, the angle φ is co-latitude and if latitude is given it must be converted
similarly, φ′ = 90 − φ.

Once these relations are established and coded properly, converting coordinate systems in R is
easy. Given a set of LAT-LON pairs, one converts to Cartesian coordinates, performs a calculation
and converts back for further analysis. we saw this earlier in chapter 4 when we found the distance
between Chicago and Paris using the cross product of two Cartesian vectors.

x

y

z

Figure 6: Coordinate system for geographic vectors and angles

0.4 Fisher Statistics

Data distributed on a sphere is quite common in Earth science. Problems that deal with fault
distributions, focal mechanisms, and paleomagnetic poles are just a few examples. It is useful for a
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researcher in geology to have at hand a set of tools ready for attacking such problem with ease and
flexibility. While canned programs exist that allow users to dump in data sets, plot see summary
statistics it is much more beneficial to be able to access data sets in minute detail while also having
higher level graphical and analytical tools. The R platform is excellent for achieving this goal. As
an example consider a set of paleomagentic poles observed from laboratory measurements of rocks
collected across a large continental region. The research needs to know what the mean orientation
of the magnetic poles are to see if the continent has rotated and move large distances in the north
south direction.

From a set of N measurements the researcher has pairs of inclination and declination estimated
in the lab. The first step is to plot these on a stereo net, either equal area (Schmidt net) or equal
angle (Wulff net). There is no set function in R available for this but contributed packages have
already solved this problem.

For a Schmidt net we load the RFOC package and call a function,

JPOST(file="/Users/lees/Mss/SEIS_BOOK/Fmech/FIGS/nets.eps" , width=10, height=6)

library('RFOC')

par(mfrow=c(1,2))

net()

title(sub='Schmidt Equal Area Net')

Wnet()

title(sub='Wulff Equal Angle Net')

dev.off()

From here on out we will use the equal area stereonet, although all the following can be accom-
plished by Wulff nets. To plot a set of poles from the experiment, we invoke a few calls to built in
functions,

az=c(-149,-154,-125,-142,-128,-123,-127,-137,-130,-130,-127,-150,

-138,-128,-141,-128,-143,-122,-130,-129,-158,-131,-128,-109,-134)

dip=c(54,62,52,53,53,45,43,50,54,52,54,53,54,53,56,52,54,46,54,48,51,

53,65,60,53)

In this case dip angles are apparently measured from the zenith, as one would for an upper
hemispherical projection.

If we want to know the mean vector summarizing these points we cannot simply average the
inclination and declination angles. This would lead to serious errors in many applications. Rather
the poles should be converted to Cartesian coordinates, then averaged and, if necessary, the resultant
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Schmidt Equal Area Net Wulff Equal Angle Net

Figure 7: Schmidt (Equal Area) and Wulff (Equal Angle) Nets

Figure 8: Schmidt Net with observations plotted
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vector is converted back to polar form. The formulas derived above are applied to all the vectors,
such that, if the angles are given in degrees, we can form a matrix of Cartesian vectors,

DEG2RAD = pi/180

a = dip * DEG2RAD

b = (az) * DEG2RAD

x = sin(a) * cos(b)

y = sin(a) * sin(b)

z = cos(a)

v = cbind(x, y, z)

The matrix v consists of three columns, representing the x,y,z coordinates of each pole. N is
the number of poles in our data set. To get the summary vectors we average the N Cartesian
coordinates individually, first by taking the sums

Re =
∑

xi (0.7)

Rn =
∑

yi (0.8)

Rd =
∑

zi (0.9)

The length of this vector is R,

R =
√

R2
e + R2

n + R2
d (0.10)

and, of course the average direction is Re/N,Rn/N,Rd/N . If R is is close to 1 the vectors are
dispersed randomly around the sphere. On the other hand if R is close to N the vectors are nearly
all aligned in the same direction. The precision parameter (K) can be thus formed by taking the

K =
(N − 1)

(N − R)
(0.11)

The precision parameter provides an estimate of the standard deviation (in degrees) of the vector
poles via the approximation,

S ≈ 81
◦

√
K

(0.12)

In R the sum of the coordinates is the mean vector, and the inverse coordinate transformation
is applied to get the resultant pole.
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Rn = sum(y)

Re = sum(x)

Rd = sum(z)

N = length(x)

Ir = 180 * atan2( sqrt(Rn^2 + Re^2), Rd)/pi

Dr = 180 * atan2(Re, Rn)/pi

We can now plot the full data set with the resultant mean orientation (blue triangle),

JPOST(file="/Users/lees/Mss/SEIS_BOOK/Fmech/FIGS/netpoint2.eps" , width=16, height=10)

#### X11(w=16, h=10)

pnet(MN)

PTS = qpoint(az, dip, UP=FALSE, col=2)

PTS = qpoint(Dr, Ir, UP=FALSE, col='blue', pch =2, cex=1.5)

dev.off()

Figure 9: Schmidt Net, observations and mean vector plotted

The next step is to provide an estimate of the precision. This approximation is good if R/n <
0.095

R = sqrt(Rn^2 + Re^2 + Rd^2)

K = (N - 1)/(N - R)

S = 81/sqrt(K)
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We can see that R is much greater than 1, close to N so the precision parameter K is large and
there is high precision. The standard deviation in this case is about 10◦.

Finally an estimate of the 95% confidence bounds may be estimated

α95 = arccos
(

1 − (N − R) 20
1

N−1

)

(0.13)

alpha=1-0.95

Alpha95 = 180 * acos(1 - ((N - R) * (((1/alpha)^(1/(N - 1))) - 1)/R))/pi

JPOST(file="/Users/lees/Mss/SEIS_BOOK/Fmech/FIGS/netpoint3.eps" , width=16, height=10)

#### X11(w=16, h=10)

pnet(MN)

jj = qpoint(az, dip, UP=FALSE, col=2)

jj = qpoint(Dr, Ir, UP=FALSE, col='black', pch=6)

jj = addsmallcirc(Dr, Ir, Alpha95, lty=1, lwd=2)

dev.off()

##### acos(1+(log(0.05/(K*R)) ))/DEG2RAD

Figure 10: 95 % confidence bound for data

The last step is to provide a quantitative estimate of the clustering of the points. If the points
are show a girded distribution versus a very pointed distribution this can be represented by replacing
the distribution by an equivalent ellipse that captures the essence of the distribution on the sphere.
If the ellipse is very elongate, the points are clustered tightly in a a narrow area. If they are
randomly distributed, however, the ellipse will be nearly spherical. This can be summarized in a
single coefficient κ which is derived from the eigenvalue decomposition of the variance-covariance
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matrix of Cartesian vectors. The matrix is a measure of the distance each point is from a (special)
axis, much like the moment of inertia of a body in physics. If the Cartesian coordinates are stored
in an N by 3 matrix v, this is achieved by calculating,

B =





N 0 0
0 N 0
0 0 N



 −





∑

xixi

∑

xiyj

∑

xizj
∑

yixj

∑

yiyi

∑

yizj
∑

zixj

∑

ziyj

∑

zizi



 (0.14)

Eigenvectors and eigenvalues can extracted for this matrix, although most authors simply cal-
culate the Eigenvalues of the second matrix on the right hand side, the variance-covariance matrix
Ψ. (We note that [Davis, 2002] does not mention this discrepancy. See [Woodcock, 1977]) The
eigenvectors represent directions along which variance is maximized or minimized. In R these are
obtained with the function eigen(). The cluster coefficient is the log eigenvalue ratios,

κ =
log

(

ǫ1
ǫ2

)

log
(

ǫ2
ǫ3

) (0.15)

KapT = t(v) %*% v

B = length(x) * diag(3) - KapT

E1 = eigen(B)

E = eigen(KapT)

Kappa = log(E$values[1]/E$values[2])/log(E$values[2]/E$values[3])

The value of κ =2.76 shows that the data is clustered near a central vector. We can see this by
calculating κ = for a variety of sample distributions (Figure 11). Depending on the value of κ

say spatially distributed, one can give a measure of the concentration distributed in space.
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Figure 11: Kappa values and eigen value ratio classification
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0.5 Example: Earthquake Focal Mechanisms

The application of stereonets can be particularly useful for earthquake data where thousands of P
and T-axes (pressure and tension) are distributed in laterally and in depth. The focal mechanism
is a way geologists plot tensor quantities in space.

When earthquakes occur below the surface they radiate energy along two sets of orthogonal
directions forming two sets of force couples called a double couple. (Landslides can radiate single
couple patterns and explosions have an isotropic component.) The double solutions can be derived
from the first motions at seismographic stations distributed at the surface by projecting the ray-
paths of the waves back to the hypocenter and plotting the directions of the first motions on a
stereographic projection of the focal sphere. The resulting solution is a set of two planes, one
representing the actual fault plane where the earth ruptured, the other is called the auxiliary plane
that also radiates energy towards the surface. The data consists of points on the focal sphere
indicating whether the motion was away or towards the earthquake hypocenter. These are plotted
and a set of best fitting orthogonal planes are determined, usually by grid search methods. An
example is shown in Figure 1 where the actual seismograms are displayed for illustration. A set of
poles (points on the sphere) are derived that relate geophysical information about the nature of the
earthquake orientation and slip vector and the compressional and tensional radiation axes. The slip
vectors correspond possibly to striations one might observe on the fault surface as the earth scrapes
the two planes during rupture.
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Figure 12: Earthquake Focal Mechanism

Strike slip, normal and reverse faults each have characteristic shapes and can represented in a
visually revealing way be introducing the associated beachball displays.

An example of a typical representation of a focal mechanism for a fault strike-dip-rake of (65,
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Strike−slip fault Normal fault Reverse (Thrust) fault

Figure 13: Examples of Faults and Focal Mechanisms

32, -34) is presented in Figure 14. Several of the relevant parameters are marked on this figure,
although generally one only plots the colored hemispheres. The hemispheres show the investigator
the orientation of the fault and auxiliary planes as seen from above projected on a lower hemisphere
bowl. The colored region shows information about the radiation pattern of the seismic waves after
rupture.

1 Map Views and Summary Representations

Once focal mechanisms are determined for each earthquake they can be plotted in map view using
standard projections as a set of beach balls (Figure 15). The beach balls relate the nature of changing
stress in the earth during earthquake swarms. In the Kamchatka example, there are thousands of
beach-balls, some covering others which makes it difficult to discern important patterns.

In this case we can extract the P and T-axes from each focal mechanism and plot them all on
one stereonet graph. Each P and T-axis is a vector in space derived from the focal mechanism.
These are gathered together in one plot and statistical testing my be applied to determine if the
distributions are uniform random, or clusters.

But really we are interested in the spatial distribution of P and T-axis across the Aleutian-
Kamchatka Arc. To see how we might visualize this, we can break down the data (Figure 15) into
small spatially distributed subsets. In each subset we project the P-T axes and contour or image the
results, plotting them in their respective positions on the map. This provides a way to investigate
variations in orientation of stress across a wide geologic region. As a further reduction of the data,
one could calculate, plot and contour κ (concentration parameter) for each region to see how stress
is focused in some regions and disbursed in others. I will leave that exercise to the reader.
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Figure 14: Earthquake Focal Mechanism

Figure 15: Kamchatka focal mechanisms
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T

Figure 16: Kamchatka P-T axes
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Figure 17: Geographic plot of Aleutian-Kamchatka P-T axes
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