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Chapter 1

Introduction

1.1 Introduction

1.2 Getting Started

This set of routines is intended to show show how to make something R .

R can be downloaded and installed on linux, windows or macOS machines by extracting files from the
website and following the instructions.

Once the code is installed you may add on a variety of packages that enhance the base installation.
Which packages you install among the thousands that are available depends on your needs and what you
are doing. I do not recommend downloading all the packages. In some cases a function on one package
may interfere with the same named function in another, unrelated package.

Install R from: http://www.r-project.org/

The R foundation updates the base R software about every 6 months. I recommend keeping the most
current version available on your system. In some cases if you upgrade to a more recent version you may
have to also re-install packages.

1
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1.3 Installing Packages

If you have administrator access on your computer you may install packages and update them. This is
easily done by starting R as administrator and telling R to exxtract a package and install it. In many
cases one package may depend on others so the install process will also extract those packages that the
original package depends on. You may extract several packages at once.

Once the packages are installed on a computer they do not need to be installed again. However, many
packages are constantly being upgraded and I recommend also installing the updates.

To find out which version of R you are using you may query by,

vers = R.Version()

print(paste("I am using", vers$version.string))

[1] "I am using R version 2.15.1 (2012-06-22)"

Repository="http://lib.stat.cmu.edu/R/CRAN"

install.packages("akima")

packageStatus()

update.packages()

To see all the packages available go to the CRAN web site and see the link the PACAKGES.

In R you can download the list of packages by executing:

tennREPOS = "http://mirrors.nics.utk.edu/cran"

options(repos=tennREPOS)

AV = available.packages(contriburl = contrib.url(getOption("repos")),

method, fields = NULL)

LAV = length(AV[,1])

There are 3902 packages in CRAN at the time of the creation of this document.

After a package is installed it can be invoked in an R session by calling the library function.
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library(GEOmap)

If you are constantly using the same libraries you can put these commands in a file that is executed
(sourced) every time R starts on your system.

1.4 Data Storage in R

All data are stored locally in the directory where R-was started, unless it is not specified. Data in R are
usually organized as objects in one of the following kinds:

scalars numbers,

vectors sequences of numbers

matrices arrays of numbers

lists combinations of several objects

dataframe matrix of mixed mode objects (must have same length)

array higher dimensional matrix or array

Data are accessed by typing the name of the variable or by issuing a print command.

If you read in a vector of character strings that should be numeric you must convert the vector to mode
numeric.

Here are some examples of setting these types of variables:

1.4.1 Scalar Examples

y = 3

x = 10

z = pi

w = x*y*z

h = x-y^z
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1.4.2 Vector Examples

y = 1:10

h = rep(6.6, times=10)

x = y/30

z = sqrt(y)

w = z* y

w

[1] 1.000000 2.828427 5.196152 8.000000 11.180340

[6] 14.696938 18.520259 22.627417 27.000000 31.622777

Note: the bracketed numbers on the left are the index values of vector (or matrix).

Note: the colon operator creates a sequence of numbers.

Note: if you multiply 2 vectors they elements are multiplied element-by-element and a vector is returned.
If you want the “dot” product you must sum the results

dotyz = sum(w)

print(dotyz)

[1] 142.6723

Other ways to create vectors:

x= runif(10)

y = seq(from=12, to=50, by=3)

1.4.3 Matrix Examples

y = matrix(1:20, ncol=4, nrow=5)

y
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[,1] [,2] [,3] [,4]

[1,] 1 6 11 16

[2,] 2 7 12 17

[3,] 3 8 13 18

[4,] 4 9 14 19

[5,] 5 10 15 20

x = matrix(runif(20) , ncol=4, nrow=5)

x

[,1] [,2] [,3] [,4]

[1,] 0.2644211 0.04856993 0.6225951 0.91758671

[2,] 0.5941977 0.65803509 0.9121923 0.64520937

[3,] 0.3460684 0.14155841 0.8941195 0.10508868

[4,] 0.7104925 0.11026551 0.1785283 0.00329403

[5,] 0.6454219 0.54138437 0.2002159 0.22526565

Note: the bracketed numbers on the left and top are the row and column index values of the matrix.

1.4.4 List Examples

Lists are heavily used in R . The are mixed vectors of several objects, perhaps scalars, vectors, matrices
and other lists. They are very useful for conglomerating a lot of information into one object. Each member
of a list may have a different mode (character, vector, numeric, etc.)

tel = 9995552456

ssn = "666-77-9898"

street = "555 Pensylvania Ave."

data1 = rnorm(5)

data2 = trunc(runif(10, 10, 100))

L1 = list(tel=tel, ssn=ssn, d1 =data1, d2=data2)

print(L1)

$tel

[1] 9995552456

$ssn



6 CHAPTER 1. INTRODUCTION

[1] "666-77-9898"

$d1

[1] 3.1387802 -0.8173817 -2.1770847 2.1484234 0.8920154

$d2

[1] 69 32 70 83 76 52 54 96 11 71

1.4.5 Data Frame

A dataframe is a matrix (or a list) where each row has the same number of elements. A dataframe is
basically a table, like a spreadsheet, with numbers, characters mixed together.

for example, we start with a list,

N = 5

names = vector(length=N, mode="character")

for(i in 1:N) { k=trunc(runif(1, 5, 10)); names[i]= paste(sample(letters, k), collapse="") }

Area = rep(919, 5)

Pref = rep(555, 5)

tel = trunc( runif(5, 1000, 9000) )

data.frame(list(Name=names, Area=Area, Pref=Pref, tel=tel))

Name Area Pref tel

1 tyizpxa 919 555 6096

2 cmqstzwou 919 555 1075

3 ezauqy 919 555 1616

4 sgxthj 919 555 7289

5 mzwcfajdo 919 555 5325
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1.5 Functions in R

All functions are called by using parentheses.

1.5.1 Files, IO

Getting data into an R session and saving data from a current R session are operations that often cause
frustration with beginners. There are several ways to store data and this can be confusing. Here is a small
bit of advice about data storage.

Data is usually stored as either ASCII (text) or a binary files. If the data is in a binary format not
rcreated by R you will need to use a specialized program to read it in and you will need detailed information
on how the data was written on the original computer where it was created.

If the data is in ASCII (text) format, there are a variety of ways to read it into R , depending on how
it is organized in the file. There are specialized functions in R for reading files that are comma separated
tables (CSV files). These are common for the output of spread sheet programs like MS-Excel.

read.table read a table of text

read.csv read a comma separated table

read.delim read a delimited table

readLines read a file line by line

scan low level read a file (see below)

1.5.2 Working Directory

After installation you should choose a working directory for R .

On a windows installation of R you will have a shortcut to Rgui.exe on your desktop and/or somewhere
on the Start menu file tree, and perhaps also in the Quick Launch part of the taskbar (Vista and earlier).
Right-click each shortcut, select Properties... and change the ‘Start in’ field to your working directory. Windows Note
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Two R commands can be used to get and set the directory where the user is working:

getwd()

setwd()

You may wish to always work in the default directory that you get when you start R . I do not
recommend this approach.

Rather, for each project create a directory and work exclusively in that folder for the duration of that
project. Keep your data and output files in that folder or other sub-folders there. When you start an
R session, depending on which project you plan on working on, switch to that folder and load what you
need there. Or, you may create a “.first” file and execute it so that it loads the appropriate libraries, data
files, etc.

1.6 Important Commands

There are a few very important commands in R.

ls()

help(ls)

save(file="R_mystuff")

history()

help.start()

set.seed(2)

rep()

seq(from=1, to=20, by=2)

You may write all your R code into a file, save the file and execute it with the source command

source("filename.R")
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Figure 1.1: GEOmap Example R

1.7 Plotting and Graphics

Here is a plot:

JPOST(file="/home/lees/Mss/SEIS_BOOK/Intro/FIGS/STUBBER.eps", width = 8, height = 10)

## par(mai=c(.2, .2, .2,.2))

plot(rnorm(10), rnorm(10))

dev.off()
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1.7.1 Plots: par()



Chapter 2

Input/Output

2.1 I-O

2.2 Seismic Data I/O

One of the big problems with seismic data is format and exchange. Unfortunately, seismologists spend an
inordinate amount of time writing codes to reformat data so that it conforms with one or anotehr programs
that are commonly used. Even though there are standard formats defined and in use today, many times
these standards are not adhered to. In many circumstances the original definitions were too restrictive and
investigators chose to extend the format in one way or another, making the standard “non-standard”. A
case in point is the SEGY standard and the PASSCAL-SEGY modification.

Another problem with exchange of seismic data is platform compatibility. To get a good binary format
that is compatible on MAC, Windows and Linux systems is apparently difficult. This is further complicated
by differences in CPU models (e.g. 64 bit versus 32 bit) and other compiler issues. I discovered some years
ago that on some systems a “long int” is misnamed and is actually defined as a “short” This can cause
havoc when reading in binary format data.

A few (somewhat) standard data formats can be read in directly in REIS . These are SAC and SEGY

as defined by PASSCAL-distributed software. I have not written an R function for reading SEED format,
but it is probably not too difficult. Maybe in the future.

11
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I am currently developing a new package called TELES aimed at analysis of teleseismic data extracted
from the IRIS DMC web site. The code has tau-p code for predicting global travel times. This work is still
in progress. TELES currently works in LINUX and MAC environments and can be obtained by contacting
me directly.

2.2.1 SAC format

SAC format data can now be read directly using native R binary codes. Earlier I/O functions in package
SACR relied on C-code for the binary input, and this lead to some problems when transferring data across
platforms.

The basic code for I/O on SAC data is:

j1 = JSAC.seis(f1, Iendian=1, HEADONLY=TRUE , BIGLONG=FALSE, PLOT=FALSE)

This is a short explanation of the arguments to JSAC.seis.

f1 vector of file names to be extracted and converted

Iendian Endian-ness of the data: 1,2,3: ”little”, ”big”, ”swap”

HEADONLY logical, TRUE= header information only

BIGLONG logical, TRUE=long=8 bytes

PLOT logical, whether to plot the data after reading in

Here f1 is the path to one, or many, file names on the local system. When HEADONLY=TRUE only
the SAC header is returned, and this can be used to set up the input of large digital signal files. The
other arguments are important for making REIS platform independent. Argument Iendian is critical if
the data were created on one platform transferred and read in on another. This argument refers to the
“endian-ness” (byte order) of memory in the computer. In R one can find out the “endian-ness” of the
system by accessing the variable

print(.Platform$endian)
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[1] "little"

If data is created on the same system on which it is analyzed, and you stay consistent, there should
be no problem. The problem of compatibility arises when data is shared across platforms. If you know
what the endian-ness of the data is from the platform where the data was written in binary format and it
is different than your system, use “swap”. Else, stay consistent. My desktop Linux machine and my laptop
MAC are both “little-endian”. My older SUN computers were “big-endian”.

The BIGLONG argument was introduced because the SAC header has both long and short integer
numbers. The issue stems from the fact that many systems (32 bit) do not recognize the LONG definition
and internally convert to short, i.e. long is defined as 4 bytes. This can create a problem when transferring
data created on a 64 bit machine to a 32 bit machine, and vice versa. So, if the format of the source
machine is known - use that for the BIGLONG argument to indicate how to treat LONG ints.

2.2.2 SEGY format

SEGY formatted data follow the same convention that SAC data do, except that there is slightly different
information in the header.

2.2.3 WIN format

There is a routine for reading WIN format from Japan, in a separate package called WINR. These codes were
written in C, actually converted from the original FORTRAN code. They are not platform independent
and they require re-compilation when converting from Windows to Linux types of systems. While they
work well on my Linux system, I have had trouble getting them to work on different systems when the
endian-ness is changing and the BIGLONG problems arise. You can try to use these, but I recommend
simply converting WIN format to some native R format and reading the files in REIS .

2.2.4 UW format

There are many routines in REIS for handling UW format seismic data. UW format comes from the
University of Washington and is used for earthquake event data. In that case many traces are stored for
each event, arrival time information is stored in a pickfile, as well as polarities. Event location and focal
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mechanism solutions are also gathered and saved in the RSEIS list. See package RFOC for instructions
on how to plot and manipulate focal mechanisms.

2.2.5 IRIS DMC data

Teleseismic data

2.2.6 REIS format

One way to store data is in native REIS format. In this case one might read in the data in one of the
previous formats and follow with a save to a binary R file on the local system. Then consequent I/O is
simply a load command in R . I use this method when I have isolated a specific section of data that I am
working on and need to read it for different purposes on different platforms, or share it with others.

As an example, suppose I have isolated a set of date/times that have events of interest. The event
times, or windows, are stored in a list of day, hr, s1, s2 where s1 and s2 are starting and ending seconds
for the event.

A database (DB, see 3.10) has been created earlier that describes the location of the SEGY files and
their content. I use RSEIS program Mine.seis to extract the selected time window from the full data set.
Here is snippet of code:

for(i in 1:length(chugs$day))

{

print(i)

at1 = chugs$day[i]+chugs$hr[i]/24 + chugs$s1[i]/(24*3600)

if(chugs$s2[i]>3600) {

at2 = chugs$day[i]+(chugs$hr[i]+1)/24 + (chugs$s2[i]-3600)/(24*3600)

}

else

{

at2 = chugs$day[i]+chugs$hr[i]/24 + chugs$s2[i]/(24*3600)

}
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CH = Mine.seis(at1, at2, DB, usta, ucomp)

fnsave = paste(sep=".", Zdate(CH$info, sel=1, t=0), "RCHUGseis")

print(paste(sep=" ", "Working on",fnsave))

save(file=fnsave, CH)

## sbut = swig(CH, sel=which(CH$STNS=="CAL") )

}

The Mine.seis call extracts the data from the database and the data is saved in the file fnsave with the
REIS list named “CH”.

In the future this data can be recalled in REIS by loading. Here that operation is put in a loop that
breaks when the QUIT button is clicked in swig

for(i in 1:length(LCHUG ))

{

load(LCHUG[i])

sbut = swig(CH, sel=which(CH$STNS=="CAL" & CH$COMPS %in% c(VNE, IJK[c(1,2)] ) ) )

if(sbut$but=="QUIT") { break }

}

Data stored in this format can be shared with others using REIS (or other R ) software. The
advantage is that the data will work on any platform (Linux, MAC or Windows) seamlessly.

2.2.7 ASCII format

Data may be stored in simple ASCII format and read in to R . To use swig , however, a proper list
should be created. In this section I will present an example illustraing how to create the appropriate list
for input into swig.

Suppose I have a data set consisting of seismic, infrasound and gravity recordings stored in 3 different
files on disc. First the data is loaded into R via any means available (scan, read.table, load, etc...).
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Here, create two time series using ricker wavelets and combine them together for analysis in swig:

freq1=1/50

dt1=1/100

nw1= 300/dt1

g1 = genrick(freq1, dt1, nw1)

date1 = recdate(45, 11, 11, 4, yr=2011)

sig1 = prep1wig(wig = g1, dt = dt1, sta = "STA1", comp = "CMP",

units = "BLAH", starttime =date1 )

freq2=1/300

dt2=1/100

nw2= 100/dt2

g2 = genrick(freq2, dt2, nw2)

date2 = recdate(45, 11, 11, 4+100, yr=2011)

sig2 = prep1wig(wig = g2, dt = dt2, sta = "STA2", comp = "CMP",

units = "BLAH", starttime =date2 )

Combine the wiggles into one list, and prepare for swig:

SIG = list(sig1=sig1[[1]], sig2=sig2[[1]])

EH=prepSEIS(SIG)

Now they are ready for plotting:

swig(EH, SHOWONLY = TRUE)
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2.3 makeDB

2.4 MakeDB

In this document I will illustrate how to create a simple flat database for use in REIS . The data base is
constructed from files, usually SEGY or SAC, but they could be native R files already processed so that
conversion is not necessary (better still).

2.5 File Structure

The basic structure for this code is based on the output of a program written by PASSCAL called ref2segy
(or ref2sac). After extracting data from disks in the field the “ref” files are dumped into a directory on the
hard drive of a computer. The program ref2segy extracts the data from messy reftek format, and converts
them to SEGY format. A log is created and other output useful for getting information about the field
operations. For now we do not need to pay attention.

As an example, the files for my 2009 santiaguito experiment in Guatemala are stored on my computer
as:

wegener% ls

/home/lees/Site/Santiaguito/SG09

#########################

segyDB R365.02/ 2009:019:15:39.9026.log 2009:007:17:11.run

filesDB R366.02/ 2009:019:15:39.run 2009:007:17:11.SMI.log

R001.02/ R006.02/ 2009:007:17:12.CAL.log 2009:007:17:11.KAM.log

R002.02/ 2009:019:15:40.9024.err 2009:007:17:12.run 2009:007:17:10.KAM.log

R003.02/ 2009:019:15:40.9024.log 2009:007:17:12.DOM.log 2009:007:17:10.run

R004.02/ 2009:019:15:40.run 2009:007:17:11.DOM.err 2009:007:17:10.CAL.err

R005.02/ 2009:019:15:39.9026.err 2009:007:17:11.DOM.log 2009:007:17:10.CAL.log

The actual waveform files are in the directories starting with “R00” etc. The Julian day is on each
folder name. This data was recorded in late December, 2008 and into January 2009. so the high julian
days are at the beginning of the experiment and the low day numbers at the end. (The spanning of the
new year actually presents some date problems that need to be overcome.)
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For example, a listing of one of the subdirectories is:

wegener% ls

/home/lees/Site/Santiaguito/SG09/R002.02

#########################

09.002.00.47.50.CAS.I

09.002.00.47.50.CAS.J

09.002.00.47.50.CAS.K

09.002.01.47.50.CAS.I

Note that the files have already been altered, in that information from the headers has been placed
in the file names. This is not critical, but it is important to get information about the station name and
component into the file headers.

2.6 makeDB

The program makeDB will read in the data once its is told where to look, what to look for and what format
to use.

The call uses a path and pattern to read in the data, file by file and store the header (and other)
information for quick access. The path variable is a pointer to the base location of the data to be extracted.
The pattern argument is used to direct the the program to read in some information and ignore extraneous
folders or files. In this example, all the data is stored in directories starting with “R0” so the pattern is
simple. We use a wild card to get all the folders for this experiment.

path = '/home/lees/Site/Santiaguito/SG09'

pattern = "R0*"

XDB = makeDB(path, pattern, kind =1)

The other parameters are critical and care must be taken to make sure they are executed correctly.
The default parameters are:

• kind = 1

• Iendian = 1,

• BIGLONG = FALSE
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2.6.1 kind

The kind argument signals REIS that the data is a specific format. The standards now are

• 1=SEGY

• 2=SAC

• 0=native RSEIS

The program reads in each file, extracts station name, component, sample rate and timing information
from the files and saves these in a list. The SEGY and SAC formats are read in using native R binary
read commands. If the data is already in REIS format, then the processing uses R command load to
read the data in and extract from the list already available.

The two other arguments relate to the format that the data is stored in and depend on the computer
system they are read on.

2.6.2 Iendian

Iendian is a flag indicating the endian-ness of the data and whether swapping needs to be performed. The
byte-order (“endian-ness”) is different for different operating systems. You can determine the endianness
of a system by accessing the R Ṗlatform variable,

> .Platform$endian

[1] "little"

If the data was written on a little endian machine, then the little option should be provided. Likewise
id big endian was used to create the data, and the machine reading it is also big-endian, then use big.
If the machine writing the data and the machine reading the data use different conventions, then “swap”
should be invoked.

endian: The endian-ness ('"big"' or '"little"' of the target system

for the file. Using '"swap"' will force swapping

endian-ness.
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2.6.3 BIGLONG

The BIGLONG variable is set so that data written with long=8 on a machine with long=4 can be acco-
modated. This problem arises mainly with SAC format data as the header for SAC data calls for a long,
even though most 32 bit machines actually use long=short. To determine what a machine is using one can
query the Ṁachine variable in R :

> .Machine$sizeof.long

[1] 8

If the size is 8 use TRUE, if 4 use FALSE.

If you get your data from someone else, or you download the binary files, you need to determine how
to set these parameters. Having the wrong arguments may lead to R crashing, or even crashing the whole
system.

2.7 Extracting Data

The purpose of makeDB is to allow quick and easy access to the data files and to make it easy to extract
time slices from the large set of files.

The REIS program I use for small data sets like the one illustrated above is called Mine.seis.

With Mine.seis you give it a the database and it finds the files that need to be accessed, extracts the
waveforms and glues the files together to get a single trace for each station/component. This list is suitable
for plotting and processing in swig. (swig=seismic wiggle).
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Chapter 3

RSEIS

3.1 RSEIS

3.2 Abstract

I present several new packages for analyzing seismic data for time series analysis and earthquake focal
mechanisms. The packages consists of modules that 1) read in seismic waveform data in various common
exchange formats, 2) display data as either event or continuous recordings and 3) performs numerous
standard analyses applied to earthquake and volcano monitoring. REIS is designed as a research tool
aimed at investigators who need to quickly assess large amounts of time-series as they are related to the
spatial distribution of geologic structure and wave propagation. In addition to time series analysis, a spatial
mapping program is included that ties waveforms and radiation patterns to geographical data-base and
mapping programs.

3.3 Waveform Analysis

The waveform module of REIS reads in seismic data in SEGY, SAC, AH, UW and various ASCII formats.
The core of these modules are a set of C programs that pass waveforms back to R and wrappers that
create lists of seismograms. REIS was written primarily for use with continuous data, so the R code is
able to sort a large database consisting of continuous data from several stations and numerous components.

23
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Each component of the waveform database may have a different sample rate and may require very different
handling in terms of instrument de-convolution. Time-windows provided by the user are used to select off
parts of the continuous data and rectify timing so that all traces represent identical time slots. Seismic
data (binary or ASCII format) are read into R and stored in structures that provide a platform for object
oriented manipulation of complex information regarding earth dynamics. In my case, I use this package to
investigate exploding volcanoes in Ecuador, Guatemala, Kamchatka and Italy.

When swig is started an initial, interactive display of the seismic records is presented to the user and a
large array of useful options are available for further processing by buttons that surround the main display
but are on the same graphics device. Some of the routines employed in the REIS package are drawn from
packages already available on the R distribution, for example wavelet transforms - although these have
been modified to some extent to accommodate specific concerns of seismologists. Other modules, like those
dealing with focal mechanisms and radiation patterns are original and will prove useful for investigators
searching for patterns of stress distribution in fault regions.

3.4 Getting started

Start by downloading packages and installing locally in the machine being used. The packages required by
REIS include RPMG , and Rwave, and RFOC if focal mechanisms are going to be inspected.

library(RSEIS)

library(RPMG)

library(Rwave)

3.4.1 Example: Reventador Volcano Explosion

There several data sets included in the REIS distribution, and these can be loaded with simple calls to
data(). For example,

data(KH)

names(KH)
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Done, Return to Calling Program

Figure 3.1: swig example with Reventador Data

loads a list structure (KH) that includes wave forms and other important meta-data about the earthquake.
To view this data we call the main program and display the earthquake records stored in memory,

############## code

swig(KH, SHOWONLY=FALSE)

dev.off()

In this example we display only the vertical component of an explosion of Reventador Volcano (Fig-
ure 4.1). The buttons shown along the top of the screen are defaults chosen from a large selection of
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buttons designed to be useful for analyzing seismic data. To zoom in on the trace, click twice on the trace
with the left mouse button, and then terminate by clicking the middle mouse. (Clicking the middle mouse
without left mouse clicks terminates the interactive session). When finished with REIS windows click the
“Done” button to close the window. Avoid using the small “x” in the corner of the window to terminate
because R does not know you have finished yet.

You can view spectra of the signal (SPEC) , spectrograms (SGRAM) and wavelet transforms (WLET).
To illustrate, left click on this trace around t=1200 and t=2000, which windows the harmonic tremor part
of this explosion. Click middle mouse to zoom in, or select one of the buttons at the top to analyze the
time series in the (selected) sub-window. Choose WLET to show the wavelet transform of the harmonic
tremor and important time variations of the volcano during eruption.

The swig program is normally run in interactive mode. In that case, once it is started R is waiting for
the user to select traces and buttons for activating a variety of programs and analysis routines. Selection
of traces is accomplished by clicking on the traces, one or more times depending on what is desired. The
program needs to know what to do with the selections once that process is over, usually by clicking on a
button around the perimeter of the screen. In the next example we will restrict the analysis to just the
vertical motion seismic data, at least for now. If you expand the screen, you can re-arrange the buttons by
clicking on the refresh button.

swig is a general analysis program designed for earthquake studies. It uses the RPMG Really Poor
Man’s GUI package to navigate between seismic traces and various analysis procedures. Once the program
is started it waits for the user to select on the screen a variety of operations, determined by the user via the
button selection, STDLAB. In the main event loop, the user may click on the screen with the left mouse
button to hi-light specific traces or windows in the panel. The right mouse click terminates the clicking
sequence and a decision is made on what to do, unless a button has been clicked. Generally, one click
selects a specific trace, two clicks specify a trace and window in that trace. If the clicking is terminated
immediately, before a left mouse is clicked, the program stops and returns NULL. If it terminates after 1
click, a refresh screen command is produced. If there are two or more clicks, and no button is pressed, the
last two clicks are used to zoom in the window.

If a button is clicked, however, the program uses the number of clicks to determine which traces to
process and what to do. For example, if the “PickWin” button is selected, a new swig is spawned where
the program gathers all the components for that station, Usually Vertical, North and East, although in
the presence of acoustic channels they will also be displayed. The new window is called with a new set of
Buttons set up specifically for picking the P, S and Acoustic arrivals. Once that window is finished, focus
reverts to the main window and the new picks are registered. Selecting the “SavePF” button will save the
new picks to a file for later use.

As another example, if the user clicks twice in a trace panel, and then selects the WLet Button, a
wavelet transform of the selected time window is calculated and a special new screen is exposed where the
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user is now focused until that session is finished by clicking “Done”.

3.5 Buttons in swig

in REIS buttons are defined as R functions.

Each Button has different properties based on the requirements for that process. Some buttons expect
more than one click to operate properly, others are simple buttons that control the look and feel of the
panel. For example, the “restore” button reverts the panel to its original time window. It can be pressed
any time and the window will redraw and resize. Each button includes a small set of instructions designed
to accomplish a specific task. There are many buttons currently defined, some described below, and there
is mechanism for users to make their own on the fly. This is the great power of RPMG and swig . For
user defined buttons see Section 3.7.

3.5.1 Example: Coso Geothermal Event

data(GH)

numstas = length(GH$STNS)

In this example, taken from the geothermal field at Coso, California, there are 49 stations, most of
which have three components (Vertical, North and East), although there are a couple of stations that are
missing some of the components. This situation is not atypical of earthquake seismic data recorded in the
field. If we show only the vertical component traces (Figure 3.2), The plot is more manageable and easier
to view:

############## code

verts = which(GH$COMPS == "V")

STDLAB = c("DONE", "QUIT", "NEXT","PREV", "zoom in", "zoom out", "refresh", "restore", "SavePF",

"PickWin", "XTR", "SPEC", "SGRAM" ,"WLET", "FILT", "Pinfo", "WINFO", "PTS", "YPIX", "WPIX")

swig(GH, sel=verts,STDLAB =STDLAB, SHOWONLY=TRUE)

dev.off()
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Figure 3.2: Example of Swig
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Done, Return to Calling Program

Figure 3.3: Coso vertical components ordered

We see that the stations here are ’mixed up’, i.e. arriving at different times.

############## code

vertord = getvertsorder(GH$pickfile, GH)

swig(GH, sel=vertord$sel, STDLAB =STDLAB, SHOWONLY=FALSE)

dev.off()

A seismic event is usually stored as a combination of waveform information and meta-date associated
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with the phase arrivals. Phase arrivals are commonly called “picks” since and analyst had to pick the
arrival times from a representation of the seismic signals, either on a computer or on a paper record. The
picks are stored in REIS in a list structure called pickfile which is an optional component of the name
waveform structure. The pickfile structure is a list comprising several sub-lists with important information
associated with stations and the event (earthquake) source.

names(GH$pickfile)

[1] "PF" "AC" "LOC" "MC" "STAS"

[6] "LIP" "E" "F" "filename" "UWFILEID"

[11] "comments" "OSTAS" "H" "N"

For now we consider the most relevant meta-data,

names(GH$pickfile$STAS)

[1] "tag" "name" "comp" "c3" "phase" "sec" "err"

[8] "pol" "flg" "res" "lat" "lon" "z"

which is a list of vectors, one for each meta-datum and one element each for each station that has meta-data.
We see in this example there are a couple of picks per station, some picks are on the vertical components
and some are on the North component or East, there are P and S-wave phase picks.

data.frame(cbind(name=GH$pickfile$STAS$name, comp=GH$pickfile$STAS$comp, phase=GH$pickfile$STAS$phase,

name comp phase time lat lon

1 CE1 V P 48.476 36.0131 -117.8025

2 CE4 V P 48.532 35.9998 -117.8023

3 CE3A V P 48.6 36.0145 -117.8198

4 SM5 V P 48.74 35.99965 -117.830261

5 NV6 V P 48.812 35.9823 -117.8076

6 CE2 V P 48.876 36.0337 -117.7883

7 NV1 V P 49.072 35.9827 -117.7649

8 CE7 V P 49.176 36.053 -117.8046

9 NV10 V P 49.312 35.999056 -117.745194

10 CE8 V P 49.292 36.0512 -117.8387
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11 NV4 V P 49.688 36.0477 -117.7403

12 NV5 V P 49.996 36.0839 -117.7536

13 NV2 V P 51.292 36.0255 -117.6213

14 CE1 N S 48.752 36.0131 -117.8025

15 CE4 N S 48.872 35.9998 -117.8023

16 CE3A N S 48.908 36.0145 -117.8198

17 SM5 N S 49.216 35.99965 -117.830261

18 NV6 N S 49.372 35.9823 -117.8076

19 CE2 N S 49.444 36.0337 -117.7883

20 CE6 N S 49.704 36.033665 -117.772726

21 CE7 N S 49.876 36.053 -117.8046

22 CE8 E S 50.316 36.0512 -117.8387

23 NV4 N S 50.984 36.0477 -117.7403

24 NV5 N S 51.28 36.0839 -117.7536

We also store event information:

names(GH$pickfile$LOC)

[1] "yr" "mo" "dom" "hr" "mi" "sec"

[7] "jd" "lat" "lon" "z" "mag" "gap"

[13] "delta" "rms" "hozerr"

Using this information we can associate the p-pick with the waveforms, match the timing information
and plot together. finally we add the picks to the section (Figure 3.4):

############## code

apx = uwpfile2ypx(GH$pickfile)

swig(GH, sel=vertord$sel, WIN=c(0, 20), APIX=apx, STDLAB =STDLAB, SHOWONLY=FALSE, velfile=VELMOD1D)

dev.off()

Brief documentation for buttons (see 3.7) in the swig program can be seen by calling the documentation
function, either for a specific button, as in:
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Figure 3.4: Coso vertical components with arrival picks
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PICK.DOC('WLET')

DONE = wavelet analysis

or for all possible buttons (not shown here because it is a long list).

PICK.DOC()

3.6 Seismic Data I/O

One of the big problems with seismic data is format and exchange. Unfortunately, seismologists spend an
inordinate amount of time writing codes to reformat data so that it conforms with one or anotehr programs
that are commonly used. Even though there are standard formats defined and in use today, many times
these standards are not adhered to. In many circumstances the original definitions were too restrictive and
investigators chose to extend the format in one way or another, making the standard “non-standard”. A
case in point is the SEGY standard and the PASSCAL-SEGY modification.

Another problem with exchange of seismic data is platform compatibility. To get a good binary format
that is compatible on MAC, Windows and Linux systems is apparently difficult. This is further complicated
by differences in CPU models (e.g. 64 bit versus 32 bit) and other compiler issues. I discovered some years
ago that on some systems a “long int” is misnamed and is actually defined as a “short” This can cause
havoc when reading in binary format data.

A few (somewhat) standard data formats can be read in directly in REIS . These are SAC and SEGY

as defined by PASSCAL-distributed software. I have not written an R function for reading SEED format,
but it is probably not too difficult. Maybe in the future.

I am currently developing a new package called TELES aimed at analysis of teleseismic data extracted
from the IRIS DMC web site. The code has tau-p code for predicting global travel times. This work is still
in progress. TELES currently works in LINUX and MAC environments and can be obtained by contacting
me directly.
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3.6.1 SAC format

SAC format data can now be read directly using native R binary codes. Earlier I/O functions in package
SACR relied on C-code for the binary input, and this lead to some problems when transferring data across
platforms.

The basic code for I/O on SAC data is:

j1 = JSAC.seis(f1, Iendian=1, HEADONLY=TRUE , BIGLONG=FALSE, PLOT=FALSE)

This is a short explanation of the arguments to JSAC.seis.

f1 vector of file names to be extracted and converted

Iendian Endian-ness of the data: 1,2,3: ”little”, ”big”, ”swap”

HEADONLY logical, TRUE= header information only

BIGLONG logical, TRUE=long=8 bytes

PLOT logical, whether to plot the data after reading in

Here f1 is the path to one, or many, file names on the local system. When HEADONLY=TRUE only
the SAC header is returned, and this can be used to set up the input of large digital signal files. The
other arguments are important for making REIS platform independent. Argument Iendian is critical if
the data were created on one platform transferred and read in on another. This argument refers to the
“endian-ness” (byte order) of memory in the computer. In R one can find out the “endian-ness” of the
system by accessing the variable

print(.Platform$endian)

[1] "little"

If data is created on the same system on which it is analyzed, and you stay consistent, there should
be no problem. The problem of compatibility arises when data is shared across platforms. If you know
what the endian-ness of the data is from the platform where the data was written in binary format and it
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is different than your system, use “swap”. Else, stay consistent. My desktop Linux machine and my laptop
MAC are both “little-endian”. My older SUN computers were “big-endian”.

The BIGLONG argument was introduced because the SAC header has both long and short integer
numbers. The issue stems from the fact that many systems (32 bit) do not recognize the LONG definition
and internally convert to short, i.e. long is defined as 4 bytes. This can create a problem when transferring
data created on a 64 bit machine to a 32 bit machine, and vice versa. So, if the format of the source
machine is known - use that for the BIGLONG argument to indicate how to treat LONG ints.

3.6.2 SEGY format

SEGY formatted data follow the same convention that SAC data do, except that there is slightly different
information in the header.

3.6.3 WIN format

There is a routine for reading WIN format from Japan, in a separate package called WINR. These codes were
written in C, actually converted from the original FORTRAN code. They are not platform independent
and they require re-compilation when converting from Windows to Linux types of systems. While they
work well on my Linux system, I have had trouble getting them to work on different systems when the
endian-ness is changing and the BIGLONG problems arise. You can try to use these, but I recommend
simply converting WIN format to some native R format and reading the files in REIS .

3.6.4 UW format

There are many routines in REIS for handling UW format seismic data. UW format comes from the
University of Washington and is used for earthquake event data. In that case many traces are stored for
each event, arrival time information is stored in a pickfile, as well as polarities. Event location and focal
mechanism solutions are also gathered and saved in the RSEIS list. See package RFOC for instructions
on how to plot and manipulate focal mechanisms.
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3.6.5 REIS format

One way to store data is in native REIS format. In this case one might read in the data in one of the
previous formats and follow with a save to a binary R file on the local system. Then consequent I/O is
simply a load command in R . I use this method when I have isolated a specific section of data that I am
working on and need to read it for different purposes on different platforms, or share it with others.

As an example, suppose I have isolated a set of date/times that have events of interest. The event
times, or windows, are stored in a list of day, hr, s1, s2 where s1 and s2 are starting and ending seconds
for the event.

A database (DB, see 3.10) has been created earlier that describes the location of the SEGY files and
their content. I use RSEIS program Mine.seis to extract the selected time window from the full data set.
Here is snippet of code:

for(i in 1:length(chugs$day))

{

print(i)

at1 = chugs$day[i]+chugs$hr[i]/24 + chugs$s1[i]/(24*3600)

if(chugs$s2[i]>3600) {

at2 = chugs$day[i]+(chugs$hr[i]+1)/24 + (chugs$s2[i]-3600)/(24*3600)

}

else

{

at2 = chugs$day[i]+chugs$hr[i]/24 + chugs$s2[i]/(24*3600)

}

CH = Mine.seis(at1, at2, DB, usta, ucomp)

fnsave = paste(sep=".", Zdate(CH$info, sel=1, t=0), "RCHUGseis")

print(paste(sep=" ", "Working on",fnsave))

save(file=fnsave, CH)

## sbut = swig(CH, sel=which(CH$STNS=="CAL") )

}
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The Mine.seis call extracts the data from the database and the data is saved in the file fnsave with the
REIS list named “CH”.

In the future this data can be recalled in REIS by loading. Here that operation is put in a loop that
breaks when the QUIT button is clicked in swig

for(i in 1:length(LCHUG ))

{

load(LCHUG[i])

sbut = swig(CH, sel=which(CH$STNS=="CAL" & CH$COMPS %in% c(VNE, IJK[c(1,2)] ) ) )

if(sbut$but=="QUIT") { break }

}

Data stored in this format can be shared with others using REIS (or other R ) software. The
advantage is that the data will work on any platform (Linux, MAC or Windows) seamlessly.

3.6.6 ASCII format

Data may be stored in simple ASCII format and read in to R . To use swig , however, a proper list
should be created. In this section I will present an example illustraing how to create the appropriate list
for input into swig.

Suppose I have a data set consisting of seismic, infrasound and gravity recordings stored in 3 different
files on disc. First the data is loaded into R via any means available (scan, read.table, load, etc...).

Here, create two time series using ricker wavelets and combine them together for analysis in swig:

freq1=1/50

dt1=1/100

nw1= 300/dt1

g1 = genrick(freq1, dt1, nw1)

date1 = recdate(45, 11, 11, 4, yr=2011)

sig1 = prep1wig(wig = g1, dt = dt1, sta = "STA1", comp = "CMP",

units = "BLAH", starttime =date1 )
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freq2=1/300

dt2=1/100

nw2= 100/dt2

g2 = genrick(freq2, dt2, nw2)

date2 = recdate(45, 11, 11, 4+100, yr=2011)

sig2 = prep1wig(wig = g2, dt = dt2, sta = "STA2", comp = "CMP",

units = "BLAH", starttime =date2 )

Combine the wiggles into one list, and prepare for swig:

SIG = list(sig1=sig1[[1]], sig2=sig2[[1]])

EH=prepSEIS(SIG)

Now they are ready for plotting:

swig(EH, SHOWONLY = TRUE)

dev.off()

3.7 Defining New Buttons

The program swig attains its real strength from its flexibility in defining new processes and actions to
be applied to time series typical of seismic and geophysical applications. The codes was designed to allow
the user maximum control of processing while maintains the organizing principle of structured coding.
Information is passed from the main swig session to defined functions via buttons and instructions
contained in the associated button definitions.

One can create new buttons in REIS by defining a function and calling it by clicking. There is a lot
of flexibility in R because of the way data can be stored in expandable lists.
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In REIS the basic structure is list with station names, component names, timing information and
digital signal data. This data structure can be passed and modified by buttons in REIS . The basic
function has two arguments, typically called, “nh” and “g” in my codes. These are passed into the button
definition, acted upon and then returned, maybe in some modified form. Most Buttons do not modify the
waveforms structures, but some do, like the filtering functions.

3.7.1 Button example

As an example of a case that does change the waveforms, consider the BUTTON that takes takes several
clicks on traces and reverses polarity (flip selected traces). The definition of this function is:

FLIP<-function(nh, g)

{

Nclick = length(g$zloc$x)

if(Nclick>1)

{

nc = 1:(Nclick-1)

lnc = length(nc)

ypick = length(g$sel)-floor(length(g$sel)*g$zloc$y[nc])

ipick = unique( g$sel[ypick] )

cat("FLIP: pwig POLARITY REVERSED: "); cat(ipick, sep=" " ); cat("\n")

for(JJ in 1:length(ipick) )

{

jtr = ipick[JJ]

nh$JSTR[[jtr]] = (-1)*nh$JSTR[[jtr]]

}

}

else

{

cat("FLIP: No traces selected: Try Again"); cat("\n")

}

g$zloc = list(x=NULL, y=NULL)

g$action = "replace"
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invisible(list(NH=nh, global.vars=g))

}

Once the FLIP function is defined (and sourced) it can be added to the vector of buttons and executed
within the swig session. The number of clicks and their locations are passed to the button definition via the
“g” (global parameter) list. The “g” list contains many attributes that control the plotting and appearance
of the plot. It has the selection vector “sel” that indicates which traces are plotted from the “nh” structure.

A signal called“action” is returned to swig to convey what to do with the returning changed parameters.
Currently there are seven action signals that can be sent back to the swig main code.

The action options are:

continue Default Action

donothing Do nothing in the main code (commonly used)

break Break out of the main loop

replot Replot the main panel

replace Replace the current nh list with the modified list

revert Revert back to the original nh data prior to changes

exit Exit the program

Many defined buttons depend on the number and location of clicks on the screen. The button may have
some logic embedded that has to be tested or vetted prior to execution to avoid crashes. Some buttons
require, for example, that a time-window be defined on each traces prior to analysis. In that case there
must be an even number of legitimate clicks to proceed. a good button will test for possible misuse before
proceeding with the analysis. If the number of location of clicks is somehow incorrect, a warning should
be issued and a “donothing” action command returned to swig.

The main ingredients of button definition in swig are a few parameters that can be used to extract and
manipulate the passing structures. First is the number of clicks passed, here extracted by accessing the
output of the locator function stored in the “g” list as zloc:
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Nclick = length(g$zloc$x)

Since the last click saved in zloc is the click on the button itself, it is discarded and only the first
(Nclick-1) points are used. In the FLIP function defined above ypick are the panel locations of the
clicks and ipick are the selected traces associated with those clicks. The JJ loop selects only those traces
indicated and reverses their polarity. The g$action indicates that on return the traces are to be replaced
by the list in function.

If it is necessary to open a new plotting device it might be useful to store the dev number for later use,
passing it through the “g” list. In this small code snippet I check to see if this device is already available.
If not open a new device.

if(PLOT)

{

if(is.null(g$ternmatDEV))

{

dev.new()

g$ternmatDEV =dev.cur()

}

else

{

dev.set(g$ternmatDEV)

}

And this should be finished with setting the device focus back to the main window when leaving the
function environment:

dev.set( g$MAINdev)

3.7.2 Accessing Button Functionality

Finally, I show here how to install and access the functions described in the previous section on defining a
new button.
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Once a button such as FLIP is defined and sourced or pasted into an R session, it can be called from
within a swig session by adding it to the list of available buttons. The standard (default) list of buttons
is defined as a vector of functions called STDLAB:

STDLAB = c("REPLOT","DONE", "SELBUT", "PSEL","LocStyle",

"ZOOM.out", "ZOOM.in", "LEFT", "RIGHT", "RESTORE", "Pinfo","WINFO",

"XTR", "SPEC", "SGRAM" ,"WLET", "FILT", "UNFILT", "SCALE", "Postscript")

Naturally, STDLAB can be replaced by an alternative, although to insure that there are at least some
buttons always present for navigation, a minimal list of buttons is always present in swig . To see these
try executing:

swig(GH, STDLAB = c("TEST"))

these are the so called “fixedbuttons”. (Note that since TEST is not a function, wehen it is pushed a
warning comes up indicating that.)

"REPLOT", "DONE", "QUIT", "SELBUT"

and the fixed “pick” buttons:

"NOPIX", "REPIX"

The REPLOT button is always located on the upper right hand of swig so the screen can be re-drawn
and the buttons re-established. If the screen is resized, the buttons may appear to go off the end of the
plot and they will need to be replotted. See section ReSizing below.

Once user defined buttons are set (like FLIP above) they can be added to the list by calling:

swig(GH, PADDLAB = c("FLIP"))
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The FLIP function can be accessed by first clicking on a one of the (traces) panels in swig and then
clicking the FLIP button. Control is transferred to the user defined function, the GH list is modified, the
action is replace, so the list is replaced and and control is returned to the swig environment for further user
interaction.

3.8 ReSizing

R sessions generally are not especially aware of the graphics environments. When a device is called and
plotting actions are determined the device characteristics are used to set the scales and units of the screen.
If the user resizes the screen after the plot has been made, R may not be able to adjust properly. In that
case the user should replot the existing plot so the correct aspect ratio and other coordinate systems can
be set properly.

In swig this can be accomplished easily by clicking the REPLOT button at any time. The figure will
be recast and the buttons will be redisplayed correctly.

3.9 Bugs and Problems

If there are more buttons defined than can fit on the top and bottom rows of swig or any GUI defined
using package RPMG , they will go off the edge of the screen on the lower left side and disappear. I may
fix this in the future, perhaps by assigning a button panel over the top and keep all defined buttons there.
This would entail a major change and I have not considered implementing this at the present time.

If a button is depressed and careful error handling has not been established within the button, the
swig session may crash. Since the user defines the action of the buttons it is virtually impossible to
protect against this. I recommend coders pay attention to error handling.

3.10 Setting up an RSEIS Database

Often we have large datasets of continuous seismic data on several stations and several components. This
would be the case for a temporary PASSCAL experiment, where data comes as station-component files
in SEGY format, typically in time slices of 1 hour depending on the acquisition parameters. The files, as
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they are retrieved in the field using PASSCAL and REFTEK software are ordered by day or DAS number
or some other method. and they are stored in some directory on the computer or disk.

If the station and component names have been written in the data headers, a simple REIS data base
system can be created for easy access to the full data set. The database is organized as a simple R list such
that searching, sorting, and data extracting are accomplished with standard R commands. The database
is thus equivalent to a flat file, or spread sheet organization.

3.10.1 DB Example

In this example the data has been extracted from the field using REFTEK (REFraction Technology) 130
dataloggers. The IRIS corporation PASSCAL software package has a routine called ref2segy that was used
to convert the data to PASSCAL-SEGY format. A similar program can convert the data to SAC format.
These two standard formats are coded as “kind” 1 or 2, respectively. Other formats can be coded and
added to the RSEIS package as needed.

Once the data is converted to a standard format, the files are stored as records on disk. In the
following example, they are stored in folders starting with the token “RO” followed by the julian day.
REIS routines read in the data file headers and create the data-base from which data can be extracted as
events or continuous records.

############# set directory

path = '/home/lees/Site/Santiaguito/SG09'

pattern = "R0*"

### get DB information

XDB = makeDB(path, pattern, kind =1)

Then data can be extracted by time, station and component. In this case 24 hours from one component.

##### select a station

usta = "CAL"

acomp = "V"

##### extract 24 hours worth of data

JJ = getseis24(DB, 2009, 2, usta, acomp, kind = 1)
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This is a short document explaining how to access data using the RSEIS package. RSEIS was created
to make handling of seismic time series easy (or easier). Typically data is stored on disk in some binary
format (SAC, SEGY or R-format) and read into memory. RSEIS manipulates the data and puts it into a
structure in R called a list. It is easy to access complex data structures. One advantage of R is that the
list can be extended, i.e. new meta-data can be attached to the data list simply in a way that does not
generally interfere with other processes in RSEIS.

Programs for reading in data include JGET.seis, JSAC.seis, JSEGY.seis. I will not illustrate these
here. I will assume these have already been called and the list is returned.

An example list is provided by RSEIS: GH.

data(GH)

verts = which(GH$COMPS == "V")

swig(GH, sel=verts, WIN=c(0, 25), SHOWONLY=TRUE)

dev.off()

If we want to extract a specific trace, say the vertical component of station CE8, try this:

iw = which(GH$STNS=="CE8" & GH$COMPS=="V" )

wig = GH$JSTR[[iw]]

dt = GH$dt[iw]

One could use the standard time-series (ts) routines that are in the base package of R:

par(mfrow=c(2,1))

plot.ts(ts(wig, deltat=dt))

title("Time Series plot using plot.ts")

plot.ts(ts(wig, deltat=dt), xlim=c(6, 10) )

title("Zoomed Time Series plot using plot.ts")

dev.off()
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Or a specific x-y time series can be created explicitly: The X-Y values would be:

x = seq(from=0, by = dt, length=length(wig))

y = wig

plot(x,y, type='l', xlab="Time", ylab="Amplitude" )

dev.off()
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3.11 Appendix

The RSEIS package uses a set of lists that have specific components useful for plotting and manipulating
seismic data. The main seismic record is a list that consists of time series and meta data (figure 3.9).

One component of the seismic record is the information on the time, sample rate and lengthof each
trace. These are stored as vectors in the list info, see figure 3.10. .

A pickfile is a list of data structured with a broad range of meta-data associated with a seismic event.
The event has a location, an error elliposid, arrival time information, a focal mechanism, etc... See figure
3.11.

dev.off()
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Chapter 4

RQUAKE

4.1 RQUAKE

4.2 Introduction

Earthquake location is a nonlinear process: Usually it is accomplished by performing a sequence of linear
inversions to converge to a location that minimizes the residual misfit. Event determination requires
several pieces of information to successfully locate an earthquake: observed arrival time estimates, station
locations, a velocity model and, in some cases, a set of station corrections.

Station locations should be provided in terms of Name, Latitude, Longitude and Depth. In some cases
several stations may be located at the same location but at different depths (elevation) so these are usually
distinguished by some naming convention. Location programs may involve projection of the datainto
cartesion coordinates or, in some programs, the processing is done with lat-lon pairs instead. Usually the
station locations are stored in a file on disk, as a table or in some other form that can be accessed and
stored in memory.

The velocity model is commonly a one-dimensional, layered model, although recently three-dimnesional
models are used. Since the location procedure must estimate the travel time from the event to the stations
ray-tracing or some other method must be used to make the travel time predictions. In the case of one-
dimensional velocity model estimating travel times is relatively simple and the RSEIS package provides
routines to accomplish this. The velocity model is typically a table with depth and associated P-wave
velocity for a given layer. Often S-wave velocities are provided, although if they are not available a
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standard approximation is Vs = Vp/
√
3 which is known as a Poisson solid. Package Rquake has several

built in velocity models that can be used initially if a derived one is not available.

Phase arrival times are typically determined from displays of seismic data. Essentially all that is needed
is the arrival time, in seconds relative to some origin of each station for each phase. Software in RSEIS
can be used to extract arrival times. Additional information may include the polarity of the P-wave arrival
used for focal mechanism determination.

4.3 Rquake

In this document I will illustrate how to Rquake, a non-linear earthquake location program.

4.4 Data Structures and Lists

4.4.1 Station File

Station location information can be stored in memory (in a list) or in a text file on disk. The station file
is a table, with name, lat, lon, and elevation.

For example:

fsta = "/home/lees/Mss/SEIS_BOOK/RQUAKE/data/staLLZ.txt"

### system(paste(sep=" ", "cat", fsta), intern = TRUE )

CHAC0 -0.39377412 -78.15369741 3588

CHAC1 -0.366526404 -78.16962049 3606

CHAC2 -0.42485567 -78.2710065 4020

CHAC3 -0.4524493 -78.18676153 4328

CHAC4 -0.461317213 -78.21783387 4412

CHAC5 -0.351938598 -78.21809574 4000

CHAC6 -0.408928292 -78.20667762 3860

CHAC7 -0.39837847 -78.22075601 4109
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CHAC8 -0.382639731 -78.2023599 3767

CHAC9 -0.323852103 -78.15061344 3762

These can be scanned in R with a simple command.

See REIS for more details on stations.

If the stations are in UTM coordinates, you may convert to Lat-Lon using the GEOmap package.

stas = scan(file=fsta,what=list(name="", lat=0, lon=0, z=0))

stas$z = stas$z/1000

Units in Rquake are in km, so the meters are converted.

REIS has a function for reading in the stations:

stas = setstas("stas")

4.4.2 Velocity Structure

The one-dimensional velocity model is also stored in file (or stored in memory in an R session). See
REIS for details.

Sample velocity model stored on disk. In this case no estimates of error are provided, so they are set
to zero. If S-wave velocity is not available, can use Vs = Vp/

√
3.

#MODEL WU COSO REGINAL FINE LAYERS REGIONAL VELOCITY MODEL

#P DEPTH P VEL PERR S DEPTH S VEL SERR

0.00 4.50 0.00 0.00 2.43 0.00

0.50 4.51 0.00 0.50 2.59 0.00

1.00 4.92 0.00 1.00 2.97 0.00

1.50 4.92 0.00 1.50 2.97 0.00

2.00 5.46 0.00 2.00 3.15 0.00
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2.50 5.46 0.00 2.50 3.15 0.00

3.00 5.54 0.00 3.00 3.27 0.00

3.50 5.54 0.00 3.50 3.27 0.00

4.00 5.58 0.00 4.00 3.42 0.00

5.50 5.58 0.00 5.50 3.42 0.00

12.00 6.05 0.00 12.00 3.49 0.00

20.00 7.20 0.00 20.00 4.15 0.00

The following is a constructor for making a 1D velocity model suitable for use in RSEIS and Rquake:

VEL=list()

VEL$'zp'=c(0,0.25,0.5,0.75,1,2,4,5,10,12)

VEL$'vp'=c(1.1,2.15,3.2,4.25,5.3,6.25,6.7,6.9,7,7.2)

VEL$'ep'=c(0,0,0,0,0,0,0,0,0,0)

VEL$'zs'=c(0,0.25,0.5,0.75,1,2,4,5,10,12)

VEL$'vs'=c(0.62,1.21,1.8,2.39,2.98,3.51,3.76,3.88,3.93,4.04)

VEL$'es'=c(0,0,0,0,0,0,0,0,0,0)

VEL$'name'='/data/wadati/lees/Site/Hengil/krafla.vel'

There are several default velocity models available in REIS . Function defaultVEL(i) will return one
of 6 “standard” models used for different purposes.

If you have a velocity model on disk, you can read it in with REIS function, Get1Dvel.

To compare a set of different velocity models visually, try,

data(ASW.vel)

data(wu_coso.vel)

data(fuj1.vel)

data(LITHOS.vel)

Comp1Dvels(c("ASW.vel","wu_coso.vel", "fuj1.vel" , "LITHOS.vel" ))

dev.off()
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Figure 4.1: swig example with Reventador Data
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4.4.3 Arrival Time List

At the most basic level, all that is required to estimate a hypocenter is relative time of arrival at each
station. The arrival times, or the picks are stored in in list mode, i.e. a list of vectors each with attributes
relating to the arrival time pick.

These vectors are described as:

tag character tag the should be unique

name character, station name

comp character, component name

c3 character, three-component station id sta.hhh.BHZ

phase character, phase name

err numeric, error

pol character polarity, U, D, 0

flg numeric, flag, used in location

res numeric, travel time residual relative to model

dur numeric, duration

yr numeric, year

mo numeric, month

dom numeric, day-of-month

jd numeric, julian day

hr numeric, hour

mi numeric, minute

sec numeric, second

col numeric, or character, color for plotting in RSEIS

onoff numeric, less than 0 means do not use
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A constructor for creating an empty pick list is cleanWPX. For many of the functions in RSEIS and
Rquake the list must contain filled vectors for each element. use function repairWPX to fill out list elements
that are deficient.

The arrival time list has one attribute, the “ID”. This can be used to identify earthquake with a unique
tag or identifaication number or name.

For Rquake , the elements that are absolutely required are: name, phase, err, sec. One can construct
the input list from these elements by putting in arbitrary information for the other pasts of the list. Once
the event and relative time shift is estiamted, these can be added or subtracted from guess origin time.

There are many different ways to store arrival time picks. It does not matter how these are stored, as
long as they are read into R and formatted properly. By disassociating the input format from the analysis,
we can simply write a short input, or conversion, routine to use all the codes as is.

We can thus store the data in any format we desire, perhaps for use in other non-R software.

Native (binary) R

The output of swig is binary R file, so the data can simply be loaded automatically.

UW format Pickfiles

loadUWpickfiles is a function that reads in a list of pickfiles stored on disk and returns a list of picked
events.

Since UW pickfiles store the times relative to a common minute mark, and station information is not
stored in the pickfile, this information is filled out in the code:

KF = vector(mode="list")

for(i in 1:length(LF))

{

g1 = getpfile(LF[i])

m1 = match(g1$STAS$name, stas$name)

g1$STAS$lat = stas$lat[m1]
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g1$STAS$lon = stas$lon[m1]

g1$STAS$z = stas$z[m1]

w1 = which(!is.na(g1$STAS$lat))

sec = g1$STAS$sec[w1]

N = length(sec)

Ldat = list(name = g1$STAS$name[w1],

sec = g1$STAS$sec[w1],

phase = g1$STAS$phase[w1],

lat = g1$STAS$lat[w1],

lon = g1$STAS$lon[w1],

z = g1$STAS$z[w1],

err = g1$STAS$err[w1],

yr = rep(g1$LOC$yr, times = N),

jd = rep(g1$LOC$jd, times = N),

mo = rep(g1$LOC$mo, times = N),

dom = rep(g1$LOC$dom, times = N),

hr = rep(g1$LOC$hr, times = N),

mi = rep(g1$LOC$mi, times = N))

Ldat$err[Ldat$err <= 0] = 0.05

Ksta = length(unique(Ldat$name))

### cat(paste("################# ", i, Ksta), sep = "\n")

Ldat = LeftjustTime(Ldat)

KF[[i]] = Ldat

}

CSV Pickfiles

An example comma-separated-value file (csv), might look like this:

> cat 2011_11_21_12_14_20_683433.csv

"","tag","name","comp","c3","phase","err","pol","flg","res","dur","yr","mo","dom","jd","hr","mi","s

"1","CHAC1","CHAC1","V",0,"G",0,"_",0,0,0,2011,11,21,325,12,14,20.6834335327148,"#0000FF",1

"2","CHAC2","CHAC2","V",0,"G",0,"_",0,0,0,2011,11,21,325,12,14,50.691351890564,"#0000FF",1

"3","CHAC6","CHAC6","V",0,"G",0,"_",0,0,0,2011,11,21,325,12,15,14.6926865577698,"#0000FF",1

"4","CHAC8","CHAC8","V",0,"G",0,"_",0,0,0,2011,11,21,325,12,15,44.7056050300598,"#0000FF",1
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4.5 Example

Suppose you have a set of arrival at the stations of a network.

H = read.csv(file='/home/lees/Mss/SEIS_BOOK/RQUAKE/data/2011_11_21_12_14_20_683433.csv')



64 CHAPTER 4. RQUAKE



Chapter 5

Filter and Decon

5.1 Filter

5.2 Signal Package

There is a package in R called signal that replicates the functionality of the signal processing toolbox in
MATLAB. There are many features in the signal package that are useful and can be applied in slightly
different ways than the implementation presented in RSEIS.

For example, consider the creation and application of a butterworth filter. In signal,

Figure 5.1:

library(RSEIS)

library(signal)

bf <- butter(3, 0.1) # 10 Hz low-pass filter

t <- seq(0, 1, len = 100) # 1 second sample

x <- sin(2*pi*t*2.3) + 0.25*rnorm(length(t))# 2.3 Hz sinusoid+noise

y <- filtfilt(bf, x)

z <- filter(bf, x) # apply filter

zz = butfilt(x, fl=0, fh=10, deltat=1/100, type="LP" , proto="BU")

plot(t, x, type='l')
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lines(t, y, col="red")

lines(t, z, col="blue")

lines(t, zz, col="purple")

legend("bottomleft", legend = c("data", "filtfilt", "filter", "butfilt"),

pch = 1, col = c("black", "red", "blue", "purple"), bty = "n")

Figure 5.2:

library(signal)

bf <- butter(2, 0.1) # 10 Hz low-pass filter

t <- seq(0, 1, len = 100) # 1 second sample

x <- rep(0, times=length(t))

x[floor(length(x)/2)] = 1

y <- filtfilt(bf, x)

z <- filter(bf, x) # apply filter

zz = butfilt(x, fl=0, fh=10, deltat=1/100, type="LP" , proto="BU", npoles=2)

plot(t, x, type='l')

lines(t, y, col="red")

lines(t, z, col="blue")

lines(t, zz, col="purple")

legend("bottomleft", legend = c("data", "filtfilt", "filter", "butfilt"),

pch = 1, col = c("black", "red", "blue", "purple"), bty = "n")

Figure 5.3:

library(signal)

# 10 Hz low-pass filter

t <- seq(0, 1, len = 100) # 1 second sample

x <- rep(0, times=length(t))

x[floor(length(x)/2)] = 1

bf2 <- butter(2, 0.1)

y2 <- filtfilt(bf2, x)

bf3 <- butter(3, 0.1)

y3 <- filtfilt(bf3, x)

bf4 <- butter(4, 0.1)
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Figure 5.1: Butterworth filter applied with filtfilt, filter and butfilt.
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Figure 5.2: Butterworth filter applied to an impulse: Impulse response functions.
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y4 <- filtfilt(bf4, x)

plot(t, x, type='l')

lines(t, y2, col="red")

lines(t, y3, col="blue")

lines(t, y4, col="purple")

legend("bottomleft", legend = c("data", "2-poles", "3-poles", "4-poles"),

pch = 1, col = c("black", "red", "blue", "purple"), bty = "n")

Figure 5.3:

library(signal)

# 10 Hz low-pass filter

t <- seq(0, 1, len = 100) # 1 second sample

x <- rep(0, times=length(t))

x[(floor(0.25*length(x))):(floor(0.75*length(x)))] = 1

bf2 <- butter(2, 0.1)

y2 <- filtfilt(bf2, x)

bf3 <- butter(3, 0.1)

y3 <- filtfilt(bf3, x)

bf4 <- butter(10, 0.1)

y4 <- filtfilt(bf4, x)

plot(range(t), range(x, y2, y3, y4) , type='n')

lines(t, x, type='l')

lines(t, y2, col="red")

lines(t, y3, col="blue")

lines(t, y4, col="purple")

legend("bottomleft", legend = c("data", "2-poles", "3-poles", "4-poles"),

pch = 1, col = c("black", "red", "blue", "purple"), bty = "n")
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Figure 5.3: Butterworth filter applied to an impulse: Impulse response functions.
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Figure 5.4: Butterworth filter applied to an impulse: Impulse response functions.
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Chapter 6

Focal Mechanisms

6.1 Focal Mech 1

6.1.1 Directional Data: Circles

Statistics using circular or directional data

Since data in the earth sciences often involve spatially distributed information on the directionality of a
particular property it is important for researchers in the geological sciences to have a firm grasp on the
differences these data have with other scalar data. Advanced treatments of circular statistics can be found
in [?] and [?].

Directions in the earth sciences arise in analysis of spatially oriented observations such as fault strikes,
striations, mineral deformation or other data concerned with bearing. It is common for the uninitiated
to make the mistake that angles can be treated like other Cartesian parameters. Angles are commonly
recorded as data points in units of degrees, although these are not very useful for typical calculation. As a
first step angles should transformed into radians using the conversion factor π/180 radians/degree. Once
angles have been converted, they can be transformed to Cartesian coordinates using

x = A cos(α)

y = A sin(α) (6.1.1)

where the angle α increases from the x (bottom) axis counter-clockwise and A is the radius of the circle,
here set to one. In many geological situations, however, angles are measured from the North clockwise. In
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that case, given data in degrees, we must reverse the direction and rotate by 90◦.

x = A cos(90− α◦)

y = A sin(90− α◦) (6.1.2)

Again, angles presented in degrees and must be converted to radians prior to using trigonometric functions
in R.

For example, if we have a set of angles a, provided as an example in Mardia(1972, p.22),

A = 1

## a=c(41.9,31.7,48.2,42.4,32.8,36.0,28.6,33.2,34.3,32.5)

### data from Mardia(1972) p 22

a = c(43,45,52,61,75,88,88,279,357)

x = A*cos((a)*pi/180)

y = A*sin((a)*pi/180)

n = length(a)

Mx = mean(x)

My = mean(y)

Mdir = (atan2(My, Mx))*180/pi

Rbar = sqrt(Mx^2+ My^2)

## draw a circle

i=pi*(0:360)/180

cx = A*cos(i);

cy = A*sin(i);

which can be plotted with the code:

plot(cx, cy, type='n', asp=1, ann=FALSE, axes=FALSE)

lines(cx,cy)

points(x,y)

segments(0,0, x,y, col=grey(.7))

arrows(0,0, Rbar*cos(Mdir*pi/180 ) , Rbar*sin(Mdir*pi/180 ), col=grey(0))

For directional data a summary direction can be extracted by adding the x and y coordinates because
they are Cartesian. If the directions are uniformly scattered, the resultant direction will be small. On the
other hand if the directions cluster in a dominant orientation, the summed vectors will add constructively
and the resultant will be large. As an example we use the data for a set of glacial striation directions from
Finland (Davis, 2003, p.317). The average direction will be oriented towards the mean x and y values.
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Figure 6.1: Circular plot of directions for FINLAND data set

a=c(23,27,53,58,64,83,85,88,93,99,100,105,113,113,114,117,121,123,125,

126,126,126,127,127,128,128,129,132,132,132,134,135,137,144,145,145,146,153,155,155,

155,157,163,165,171,172,179,181,186,190,212)

x = A*cos((90-a)*pi/180)

y = A*sin((90-a)*pi/180)

Mx = mean(x)

My = mean(y)

Mdir = (pi/2-atan2(My, Mx))*180/pi

The mean direction of this data is thus α =129◦. This can be added simply to the plot of the original data,

plot(cx, cy, type='n', asp=1, ann=FALSE, axes=FALSE)

lines(cx,cy)

points(x,y)

segments(0,0, x,y, col=grey(.8))

arrows(0, 0, Mx, My, lwd=2)
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Figure 6.2: FINLAND data set with mean direction shown

The mean resultant length is often denoted R̄ and is used in a variety of quantitative measures of the
circular data set. for example, the circular variance is estimated by

S = 1− R

n
= 1− R̄ (6.1.3)

which in our case is,

R = sqrt(sum(x)^2+sum(y)^2)

Rbar = sqrt(Mx^2+ My^2)

S = 1 - Rbar

To perform hypothesis testing with circular data we use the von Mises distribution, or the circular
normal distribution. This distribution is characterized by two parameters, κ and µ and is given by,

f(x | µ, κ) = eκcos(x−µ)

2πI0(κ)
(6.1.4)

To illustrate this distribution with different levels of compaction κ we can generate distributions using R,
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Figure 6.3: Probability Density Function for von Mises Distribution

The CRAN distribution site has a package called CircStats that has many of the functions used in
analyzing circular data. Given a calculated R̄ value one can get an estimate of the κ by loading the
CircStats package and calling the est.kappa function.

library(CircStats)

kappa = est.kappa(a*pi/180)

mu = Mdir*pi/180

If the data were extracted from a uniform distribution we would expect the value of R̄ to be small. A
test due to Lord Rayleigh can be accomplished be comparing R̄ to critical values for different P-values.
A table of P-values can be found in Davis (Table A10) or Mardia (Appendix 2.5). Here we provide an
approximation using a method devised by Wilkie(1983). The table data are recreated using R:

pees = c(0.1, 0.05, 0.025, 0.01)

n = c(4:25, 30, 35, 40, 45, 50)

On = 1/n

TAB = matrix(ncol=length(pees)+1, nrow=length(n))

TAB[,1] = n
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for(i in 1:length(pees))

{

P = pees[i]

K = -log(P) - ( (2*log(P) + (log(P)^2) )/(4*n))

TAB[,i+1] = sqrt(K*On)

}

colnames(TAB)<-c("n",pees)

print(TAB)

n 0.1 0.05 0.025 0.01

[1,] 4 0.7515051 0.8380480 0.9082263 0.9817512

[2,] 5 0.6734610 0.7545310 0.8218730 0.8950204

[3,] 6 0.6155695 0.6917903 0.7560085 0.8271724

[4,] 7 0.5704262 0.6424505 0.7037021 0.7724448

[5,] 8 0.5339490 0.6023408 0.6608886 0.7271740

[6,] 9 0.5036789 0.5689047 0.6250175 0.6889536

[7,] 10 0.4780342 0.5404774 0.5944012 0.6561432

[8,] 11 0.4559456 0.5159227 0.5678738 0.6275859

[9,] 12 0.4366606 0.4944347 0.5446013 0.6024414

[10,] 13 0.4196323 0.4754243 0.5239693 0.5800831

[11,] 14 0.4044523 0.4584497 0.5055145 0.5600340

[12,] 15 0.3908088 0.4431716 0.4888793 0.5419235

[13,] 16 0.3784589 0.4293253 0.4737836 0.5254589

[14,] 17 0.3672104 0.4167003 0.4600039 0.5104058

[15,] 18 0.3569087 0.4051270 0.4473596 0.4965739

[16,] 19 0.3474280 0.3944672 0.4357030 0.4838068

[17,] 20 0.3386647 0.3846066 0.4249120 0.4719748

[18,] 21 0.3305328 0.3754503 0.4148845 0.4609693

[19,] 22 0.3229599 0.3669181 0.4055346 0.4506983

[20,] 23 0.3158847 0.3589422 0.3967894 0.4410839

[21,] 24 0.3092550 0.3514648 0.3885863 0.4320590

[22,] 25 0.3030259 0.3444359 0.3808716 0.4235657

[23,] 30 0.2766935 0.3146890 0.3481840 0.3875217

[24,] 35 0.2562147 0.2915194 0.3226842 0.3593437

[25,] 40 0.2396993 0.2728135 0.3020737 0.3365333

[26,] 45 0.2260145 0.2573005 0.2849666 0.3175783

[27,] 50 0.2144342 0.2441646 0.2704710 0.3015024

Once a significance level has been chosen, it can be compared to values in the table to determine the
critical points for rejection. As shown in Davis, since R̄ =0.8 is greater than the critical value from the
table R̄50 5% =0.244. Thus at 5% significance we reject the null hypothesis that the concentration parameter
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is zero and conclude that the data are not uniformly distributed.

Rose Diagrams

Rose diagrams are often used to represent graphically circular distributions of data in a way that is
analogous to histograms. Serious problems can arise resulting in misleading readers if rose diagrams are
done improperly. If the petals of a rose diagram are plotted with radii proportional to the number of
samples in the bin, as opposed to the area of the petal plotted proportional to the number or percentage
of the elements between two angles, the rose diagram will appear biased, or weighted improperly. To
illustrate this we use a set of data from Davis called FINLAND.txt using the program rose.R supplied in
the appendix.
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Figure 6.4: Simple Rose Diagram

Note that the scale is not linear. In the example and code provided here it is worthwhile noting that
the rose diagram can be scaled and plotted anywhere on an existing plot made in R. For example, if a map
is plotted and circular rose diagrams are used to illustrate the spatial variation of orientations it is easy to
create a complex plot of both map and roses together.

Here one can easily see the spatial variation of directional data across a field site. For each location a
statistical test can be performed and confidence can be used to modify the roses by color or other method.
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Figure 6.5: Geographic distribution of Rose diagrams

6.2 Focal Mech 2

6.2.1 Data distributed on Spheres

Analysis of data on the sphere is critical to geological sciences for an obvious reason: the Earth can be
approximated simply as a sphere to first order. Beyond this important motivation it spheres are used
in geological sciences to represent the distribution of three-dimensional orientations and directions, the
distribution of planar surfaces and, of course, as simplification of tensors (focal mechanisms).

This chapter includes analysis of upper and lower hemispheric projections of fault information, focal
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mechanisms, stress distributions and associated statistical tests. Examples from paleomagnetic data will
be presented and rotations on the sphere will be discussed. This chapter ties in well with the section on
Matrices. An excellent advanced book on this topic is [?] and [?].

6.2.2 Spherical Coordinate Systems

Geometry on the sphere is critical for Earth Science data analysis for obvious reasons, namely that the
Earth is approximated to first order by a sphere. Locations on the planet are referenced via latitude (Lat)
and longitude (Lon), and calculations related to positioning or distribution of properties on the globe
are essential. Furthermore, many applications involving spherical distributions are common in structural
geology and geophysics, where faults are represented as poles on and earthquake ruptures are modeled as
double couple focal mechanisms using spherical relations between fault and auxiliary planes.

We first establish the relationship between Cartesian coordinate system (x, y, z) and spherical coordi-
nate system (r, φ, θ). For many applications the mathematical definition stems from taking the x-axis on
the page to the right, the y-axis is up, and the z-axis is out of the page. In that case r is the radius of the
vector, φ is the angle from the zenith along the z-axis, and θ is the angle of the projection of the vector
in the x-y plane with the x axis. The relationship between the Cartesian and the spherical coordinates is
expressed as a transformation,

x = r cos(θ) sin(φ)

y = r sin(θ) sin(φ) (6.2.1)

z = r cos(φ)

where the inverse relationships are,

r =
√

x2 + y2 + z2

φ = cos−1(z/r) (6.2.2)

θ = tan−1(y/x)

These are illustrated in the following diagram where the angles and the Cartesian axes are laid out. As
noted earlier, it is conventional in geographical applications to use North facing up on the page. In that
case the θ should be adjusted to represent increasing angle clockwise, or θ′ = 90− θ when θ is in degrees.
Also, the angle φ is co-latitude and if latitude is given it must be converted similarly, φ′ = 90− φ.

Once these relations are established and coded properly, converting coordinate systems in R is easy.
Given a set of LAT-LON pairs, one converts to Cartesian coordinates, performs a calculation and converts
back for further analysis. we saw this earlier in chapter 4 when we found the distance between Chicago
and Paris using the cross product of two Cartesian vectors.
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Figure 6.6: Coordinate system for geographic vectors and angles
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6.2.3 Fisher Statistics

Data distributed on a sphere is quite common in Earth science. Problems that deal with fault distributions,
focal mechanisms, and paleomagnetic poles are just a few examples. It is useful for a researcher in geology
to have at hand a set of tools ready for attacking such problem with ease and flexibility. While canned
programs exist that allow users to dump in data sets, plot see summary statistics it is much more beneficial
to be able to access data sets in minute detail while also having higher level graphical and analytical tools.
The R platform is excellent for achieving this goal. As an example consider a set of paleomagentic poles
observed from laboratory measurements of rocks collected across a large continental region. The research
needs to know what the mean orientation of the magnetic poles are to see if the continent has rotated and
move large distances in the north south direction.

From a set of N measurements the researcher has pairs of inclination and declination estimated in the
lab. The first step is to plot these on a stereo net, either equal area (Schmidt net) or equal angle (Wulff
net). There is no set function in R available for this but contributed packages have already solved this
problem.

For a Schmidt net we load the RFOC package and call a function,

JPOST(file="/home/lees/Mss/SEIS_BOOK/Fmech/FIGS/nets.eps" , width=10, height=6)

library('RFOC')

par(mfrow=c(1,2))

net()

title(sub='Schmidt Equal Area Net')

Wnet()

title(sub='Wulff Equal Angle Net')

dev.off()

From here on out we will use the equal area stereonet, although all the following can be accomplished
by Wulff nets. To plot a set of poles from the experiment, we invoke a few calls to built in functions,

az=c(-149,-154,-125,-142,-128,-123,-127,-137,-130,-130,-127,-150,

-138,-128,-141,-128,-143,-122,-130,-129,-158,-131,-128,-109,-134)

dip=c(54,62,52,53,53,45,43,50,54,52,54,53,54,53,56,52,54,46,54,48,51,

53,65,60,53)

In this case dip angles are apparently measured from the zenith, as one would for an upper hemispherical
projection.
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Schmidt Equal Area Net Wulff Equal Angle Net

Figure 6.7: Schmidt (Equal Area) and Wulff (Equal Angle) Nets

Figure 6.8: Schmidt Net with observations plotted
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If we want to know the mean vector summarizing these points we cannot simply average the inclination
and declination angles. This would lead to serious errors in many applications. Rather the poles should be
converted to Cartesian coordinates, then averaged and, if necessary, the resultant vector is converted back
to polar form. The formulas derived above are applied to all the vectors, such that, if the angles are given
in degrees, we can form a matrix of Cartesian vectors,

DEG2RAD = pi/180

a = dip * DEG2RAD

b = (az) * DEG2RAD

x = sin(a) * cos(b)

y = sin(a) * sin(b)

z = cos(a)

v = cbind(x, y, z)

The matrix v consists of three columns, representing the x,y,z coordinates of each pole. N is the number
of poles in our data set. To get the summary vectors we average the N Cartesian coordinates individually,
first by taking the sums

Re =
∑

xi (6.2.3)

Rn =
∑

yi (6.2.4)

Rd =
∑

zi (6.2.5)

The length of this vector is R,

R =
√

R2
e +R2

n +R2
d (6.2.6)

and, of course the average direction is Re/N,Rn/N,Rd/N . If R is is close to 1 the vectors are dispersed
randomly around the sphere. On the other hand if R is close to N the vectors are nearly all aligned in the
same direction. The precision parameter (K) can be thus formed by taking the

K =
(N − 1)

(N −R)
(6.2.7)

The precision parameter provides an estimate of the standard deviation (in degrees) of the vector poles
via the approximation,

S ≈ 81
◦

√
K

(6.2.8)
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In R the sum of the coordinates is the mean vector, and the inverse coordinate transformation is applied
to get the resultant pole.

Rn = sum(y)

Re = sum(x)

Rd = sum(z)

N = length(x)

Ir = 180 * atan2( sqrt(Rn^2 + Re^2), Rd)/pi

Dr = 180 * atan2(Re, Rn)/pi

We can now plot the full data set with the resultant mean orientation (blue triangle),

JPOST(file="/home/lees/Mss/SEIS_BOOK/Fmech/FIGS/netpoint2.eps" , width=16, height=10)

#### X11(w=16, h=10)

pnet(MN)

PTS = qpoint(az, dip, UP=FALSE, col=2)

PTS = qpoint(Dr, Ir, UP=FALSE, col='blue', pch =2, cex=1.5)

dev.off()

Figure 6.9: Schmidt Net, observations and mean vector plotted

The next step is to provide an estimate of the precision. This approximation is good if R/n < 0.095
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R = sqrt(Rn^2 + Re^2 + Rd^2)

K = (N - 1)/(N - R)

S = 81/sqrt(K)

We can see that R is much greater than 1, close to N so the precision parameter K is large and there
is high precision. The standard deviation in this case is about 10◦.

Finally an estimate of the 95% confidence bounds may be estimated

α95 = arccos
(

1− (N −R) 20
1

N−1

)

(6.2.9)

alpha=1-0.95

Alpha95 = 180 * acos(1 - ((N - R) * (((1/alpha)^(1/(N - 1))) - 1)/R))/pi

JPOST(file="/home/lees/Mss/SEIS_BOOK/Fmech/FIGS/netpoint3.eps" , width=16, height=10)

#### X11(w=16, h=10)

pnet(MN)

jj = qpoint(az, dip, UP=FALSE, col=2)

jj = qpoint(Dr, Ir, UP=FALSE, col='black', pch=6)

jj = addsmallcirc(Dr, Ir, Alpha95, lty=1, lwd=2)

dev.off()

##### acos(1+(log(0.05/(K*R)) ))/DEG2RAD

The last step is to provide a quantitative estimate of the clustering of the points. If the points are show
a girded distribution versus a very pointed distribution this can be represented by replacing the distribution
by an equivalent ellipse that captures the essence of the distribution on the sphere. If the ellipse is very
elongate, the points are clustered tightly in a a narrow area. If they are randomly distributed, however, the
ellipse will be nearly spherical. This can be summarized in a single coefficient κ which is derived from the
eigenvalue decomposition of the variance-covariance matrix of Cartesian vectors. The matrix is a measure
of the distance each point is from a (special) axis, much like the moment of inertia of a body in physics. If
the Cartesian coordinates are stored in an N by 3 matrix v, this is achieved by calculating,

B =





N 0 0
0 N 0
0 0 N



−





∑

xixi
∑

xiyj
∑

xizj
∑

yixj
∑

yiyi
∑

yizj
∑

zixj
∑

ziyj
∑

zizi



 (6.2.10)

Eigenvectors and eigenvalues can extracted for this matrix, although most authors simply calculate the
Eigenvalues of the second matrix on the right hand side, the variance-covariance matrix Ψ. (We note that
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Figure 6.10: 95 % confidence bound for data

[?] does not mention this discrepancy. See [?]) The eigenvectors represent directions along which variance
is maximized or minimized. In R these are obtained with the function eigen(). The cluster coefficient is
the log eigenvalue ratios,

κ =
log

(

ǫ1
ǫ2

)

log
(

ǫ2
ǫ3

) (6.2.11)

KapT = t(v) %*% v

B = length(x) * diag(3) - KapT

E1 = eigen(B)

E = eigen(KapT)

Kappa = log(E$values[1]/E$values[2])/log(E$values[2]/E$values[3])

The value of κ =2.76 shows that the data is clustered near a central vector. We can see this by calculating
κ = for a variety of sample distributions (Figure 6.11). Depending on the value of κ

say spatially distributed, one can give a measure of the concentration distributed in space.
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6.3 Focal Mech 3

6.3.1 Example: Earthquake Focal Mechanisms

The application of stereonets can be particularly useful for earthquake data where thousands of P and
T-axes (pressure and tension) are distributed in laterally and in depth. The focal mechanism is a way
geologists plot tensor quantities in space.

When earthquakes occur below the surface they radiate energy along two sets of orthogonal directions
forming two sets of force couples called a double couple. (Landslides can radiate single couple patterns
and explosions have an isotropic component.) The double solutions can be derived from the first motions
at seismographic stations distributed at the surface by projecting the ray-paths of the waves back to
the hypocenter and plotting the directions of the first motions on a stereographic projection of the focal
sphere. The resulting solution is a set of two planes, one representing the actual fault plane where the earth
ruptured, the other is called the auxiliary plane that also radiates energy towards the surface. The data
consists of points on the focal sphere indicating whether the motion was away or towards the earthquake
hypocenter. These are plotted and a set of best fitting orthogonal planes are determined, usually by
grid search methods. An example is shown in Figure 1 where the actual seismograms are displayed for
illustration. A set of poles (points on the sphere) are derived that relate geophysical information about
the nature of the earthquake orientation and slip vector and the compressional and tensional radiation
axes. The slip vectors correspond possibly to striations one might observe on the fault surface as the earth
scrapes the two planes during rupture.

Strike slip, normal and reverse faults each have characteristic shapes and can represented in a visually
revealing way be introducing the associated beachball displays.

An example of a typical representation of a focal mechanism for a fault strike-dip-rake of (65, 32, -34) is
presented in Figure 6.14. Several of the relevant parameters are marked on this figure, although generally
one only plots the colored hemispheres. The hemispheres show the investigator the orientation of the fault
and auxiliary planes as seen from above projected on a lower hemisphere bowl. The colored region shows
information about the radiation pattern of the seismic waves after rupture.

6.4 Map Views and Summary Representations

Once focal mechanisms are determined for each earthquake they can be plotted in map view using standard
projections as a set of beach balls (Figure 6.15). The beach balls relate the nature of changing stress in
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Figure 6.12: Earthquake Focal Mechanism

the earth during earthquake swarms. In the Kamchatka example, there are thousands of beach-balls, some
covering others which makes it difficult to discern important patterns.

In this case we can extract the P and T-axes from each focal mechanism and plot them all on one
stereonet graph. Each P and T-axis is a vector in space derived from the focal mechanism. These are
gathered together in one plot and statistical testing my be applied to determine if the distributions are
uniform random, or clusters.

But really we are interested in the spatial distribution of P and T-axis across the Aleutian-Kamchatka
Arc. To see how we might visualize this, we can break down the data (Figure 6.15) into small spatially
distributed subsets. In each subset we project the P-T axes and contour or image the results, plotting
them in their respective positions on the map. This provides a way to investigate variations in orientation
of stress across a wide geologic region. As a further reduction of the data, one could calculate, plot and
contour κ (concentration parameter) for each region to see how stress is focused in some regions and
disbursed in others. I will leave that exercise to the reader.
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Figure 6.13: Examples of Faults and Focal Mechanisms
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Figure 6.14: Earthquake Focal Mechanism
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Figure 6.15: Kamchatka focal mechanisms
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Figure 6.16: Kamchatka P-T axes
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Figure 6.17: Geographic plot of Aleutian-Kamchatka P-T axes
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Chapter 7

Particle Motion

7.1 Hodograms

7.2 Particle Motion Analysis

Start out by calling the RSEIS library,

library(RSEIS)

Then load some data and plot. This data is from the Coso Geothermal field in Coso Califormia. The
data is sampled at 250 sampled/sec and there are numerous stations recorded on three components. Some
stations are too noise for particle motion analysis.

data(GH)

# swig(GH, SHOWONLY=TRUE)

In this case the GH structure holds the phase arrival information as well as the station locations and
event location.

97
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print(GH$pickfile$STAS$name)

[1] "CE1" "CE4" "CE3A" "SM5" "NV6" "CE2" "NV1" "CE7"

[9] "NV10" "CE8" "NV4" "NV5" "NV2" "CE1" "CE4" "CE3A"

[17] "SM5" "NV6" "CE2" "CE6" "CE7" "CE8" "NV4" "NV5"

We will choose one station and do the hodogram analysis there, but our analysis could easily be put
in a loop to cover all the stations.

thesta = "CE1"

iwv = which(GH$STNS==thesta & GH$COMPS=="V")

iwn = which(GH$STNS==thesta & GH$COMPS=="N")

iwe = which(GH$STNS==thesta & GH$COMPS=="E")

data = cbind(GH$JSTR[[iwv]], GH$JSTR[[iwn]], GH$JSTR[[iwe]])

Next we get the station back azimuth to the seismic event, which has been located previously. The
information on the location of the seismic event is stored also in the pickfile.

ipphase = which(GH$pickfile$STAS$name==thesta & GH$pickfile$STAS$phase=="P" )

isphase = which(GH$pickfile$STAS$name==thesta & GH$pickfile$STAS$phase=="S" )

lat=GH$pickfile$STAS$lat[ipphase]

lon = GH$pickfile$STAS$lon[ipphase]

DAZ = rdistaz(lat, lon, GH$pickfile$LOC$lat,GH$pickfile$LOC$lon )

rbaz = grotseis(DAZ$baz, flip=FALSE)

To illustrate the approach we start by plotting a map view of the stations and the earthquake source,

plot( c(GH$pickfile$STAS$lon, GH$pickfile$LOC$lon) ,

c(GH$pickfile$STAS$lat, GH$pickfile$LOC$lat), type='n', xlab="LON", ylab="LAT")

points(GH$pickfile$STAS$lon, GH$pickfile$STAS$lat, pch=6)

points(GH$pickfile$LOC$lon, GH$pickfile$LOC$lat, pch=8)

text(GH$pickfile$STAS$lon, GH$pickfile$STAS$lat, GH$pickfile$STAS$name, pos=3)
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## plot( c(lon, GH$pickfile$LOC$lon) , c(GH$pickfile$STAS$lat, GH$pickfile$LOC$lat))

## text(lon, lat, labels="station")

These can be plotted in km rather than LAT-LON by either projection or by simply using the distances
to the stations and azimuths to get the approximate flat orientation. We show the orientation of the
horizontal components after the seismogram gets rotated by the designated angle. The red arrow is the
radial component and the blue is the transverse.

x = DAZ$dist*sin(DAZ$baz*pi/180)

y = DAZ$dist*cos(DAZ$baz*pi/180)

plot(c(0,1.3*x), c(0,1.3*y), type='n', asp=1, xlab="E-W, km", ylab="N-S, km")

points(c(0,x), c(0,y), pch=c(3,6))

text(x,y, labels="station", pos=1)

text(x,y, labels=GH$pickfile$STAS$name[ipphase], pos=2)

text(0,0, labels="source", pos=3)

vecs = rbind(c(0,0,1), c(0,1,0))

bvec = vecs %*% rbaz

bvec = .1*DAZ$dist*bvec

arrows(x,y, x+bvec[,2], y+bvec[,3], col=c("red", "blue"))

We first plot the data in its original Vertical-North-East orientation,

## data = cbind(GH$JSTR[[iwv]], GH$JSTR[[iwn]], GH$JSTR[[iwe]])

vnelabs=c("Vertical", "North", "East")

rotlabs=c("Vertical", "Radial(away)", "Transvers(right)")

xt=seq(from=0, by=GH$dt[iwv], length=length(GH$JSTR[[iwv]]))

PLOT.MATN(data, tim=xt, dt=GH$dt[iwv], notes=vnelabs)

And then we rotate the seismograms so that they are oriented Vertical-Radial-Transverse, is is often
done in seismic analysis:
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Figure 7.1: Map view of the stations and earthquake source.
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## data = cbind(GH$JSTR[[iwv]], GH$JSTR[[iwn]], GH$JSTR[[iwe]])

btemp = data %*% rbaz

PLOT.MATN(btemp, tim=xt, dt=GH$dt[iwv], notes=rotlabs)

Next we extract information from the seismic structure that tells us when the P and S-arrival were
estimated. This information is stored in the pickfile structure, but we want to know how many seconds
paste the start of the trace the arrivals came in, so we can window that portion of the trace for hodogram
analysis.

i1 = match(GH$STNS[iwv], GH$pickfile$STAS$name)

reft = list(jd=GH$info$jd[iwv], hr=GH$info$hr[iwv], mi=GH$info$mi[iwv], sec=GH$info$sec[iwv] )

ptim = list(jd=GH$pickfile$LOC$jd, hr=GH$pickfile$LOC$hr, mi=GH$pickfile$LOC$mi, sec=GH$pickfile$STAS$sec[ipphase]

stim = list(jd=GH$pickfile$LOC$jd, hr=GH$pickfile$LOC$hr, mi=GH$pickfile$LOC$mi, sec=GH$pickfile$STAS$sec[isphase]

t1 = secdifL( reft, ptim)

t2 = secdifL( reft, stim)

PLOT.MATN(btemp, WIN=c(5,8) , tim=xt, dt=GH$dt[iwv], notes=rotlabs)

abline(v=t1, col='red', lty=2)

abline(v=t2, col='blue', lty=2)

mtext(side=3, at=t1, line=.1, text="Pwave", col='red')

mtext(side=3, at=t2, line=.1, text="Swave", col='blue')

pwin = c(t1-.02, t1+.09)

swin = c(t2-.01, t2+.1)

abline(v=pwin, col='red', lty=2)

abline(v=swin, col='blue', lty=2)

So we now extract that portion and apply the hodogram program on the P-wave arrival

rbow=rainbow(140)[1:100]

atemp = btemp[xt>pwin[1]&xt<pwin[2] ,]

## PLOT.MATN(atemp, tim=xt[xt>pwin[1]&xt<pwin[2]], dt=GH$dt[iwv], notes=rotlabs)

hodogram(atemp, dt=GH$dt[iwv] ,labs=rotlabs, STAMP=thesta, COL=rbow )
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and on the S-wave arrival

atemp = btemp[xt>swin[1]&xt<swin[2] ,]

### PLOT.MATN(atemp, tim=xt[xt>swin[1]&xt<swin[2]], dt=GH$dt[iwv], notes=rotlabs)

hodogram(atemp, dt=GH$dt[iwv] ,labs=rotlabs, STAMP=thesta, COL=rbow )

Clearly, a loop can be programed so that all the stations are examined for the particle motion and
specific patterns will be revealed.

For example, we may wish to differentiate between direct arrival of body waves and later arrivals of
surface waves. The Raleigh wave has retrograde motion int he vertical-radial components, so we expect to
see the first motions moving opposite the direction of wave propagation (i.e. towards the source) as the
motion is decomposed.

Hodograms can be used to estimate the arrival of a “split shear wave” often used to detect anisotropy
in the geologic structures in the subsurface. In some cases anisotropy indicates crack orientation and in
the mantle it may refer to fluid flow as olivene crystals align along the direction of flow.
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Chapter 8

Inverse Theory

8.1 Tomography

8.2 Tomographic Inversion: Introduction

Seismic tomography uses the travel time of elastic waves to probe the internal structure of the earth. It
differs from traditional medical tomography in four major aspects:

1. acoustic signals travel in highly curved raypaths in media that vary in 3-dimensions,

2. the travel time is a non-linear function of the velocity field (“velocity” field in the seismic sense is the
scalar wave speed),

3. when the sources are earthquakes, the distribution of rays covering the target cannot be controlled
and is often highly inhomogeneous and

4. uncertainties in the travel time exist because the source location and origin time must be determined
from the observations themselves. These differences indicate that special care must be taken when
techniques borrowed from the medical field are applied to seismic data. Specifically, due to the non-
uniform distribution of sources and receivers, the convolutional techniques of inversion, common in
medical tomography, are inapplicable in the seismic case and iterative approaches are used instead.
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In this demonstration we show how to set up a synthetic 2D tomographic modeling experiment and
perform the inversion via matrix inversion.

8.3 History

Tomography (literally, ‘slice picture’) originated in radio astronomy as a method to image aspects of remote
regions of the universe. Later physicists and bio-physicists collaborated to create the first methodology
and instrumentation that led to the first tomographic analysis of live tissue, especially human bodies. This
approach was called ‘computer aided tomography’ or CAT scans. Researchers who pioneered these methods
received the Nobel Prize in physiology and medicine in 1979 (Allan Cormack and Godfrey Hounsfield). At
the same time seismologists recognized that similar methodology could be applied to imaging the earth.
Early papers on these approaches were not called tomography, but simply ‘three-dimensional analysis’. It
was not until the early 1980’s that data sets large enough to actually mimic an approach similar to medical
tomography emerged.

8.4 Basic Idea

The basic idea is illustrated in cartoon form in Figure 8.1 . Earthquakes emit seismic energy that travels
out to the stations at the surface. At first, we assume an intervening velocity structure, typically one
dimensional, and use that to predict traveltimes to each station. If the model is correct the difference
between predicted and observed arrivals will be small. If waves pass through anomalous structures, however,
travel times will be perturbed and the differences will become significant. Seismic tomography often
involves using the travel time residuals to reconstruct anomalies where large numbers of raypaths overlap
at varying angles. It can be shown that with complete coverage from all angles, the anomalous body can
be reconstructed perfectly. This ideal situation is never achieved in real analyses, of course.

8.5 Inversion approach

Nearly all seismic tomography is founded on a linearization of the highly non-linear seismic inversion
problem. In equation (1) it was noted that the raypath depended on the velocity model which also
depends on the raypaths in the inversion. Furthermore, earthquake locations are also derived using the
velocity models, so this introduces an additional non-linearity. To circumvent the nonlinearity we usually
introduce a linearization of the inversion and iterate a sequence of linear inversion in the hopes that we
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Figure 8.1: Tomographic inversion of a Magma Chamber. The grid in the subsurface represents the grid
used for the tomographic inversion. The two rays on the right traverse through the anomalous magma
body. those on the left do not, so they do not contribute changing the model. The blocks highlighted are
the ones that are perturbed sequentially in row-action methods of inversion.
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will converge to the correct non-linear solution. This is accomplished by assuming we have a reasonably
close initial guess to the correct solution and then seeking a small perturbation which will drive the model
closer to the correct, final model. The sequence of calculations involves making an initial (typically 1D)
model, finding the raypaths in that model, perturbing the (3D) model so the travel times are minimized,
adding new perturbations to the first model and iterating. Once the new model is derived, new earthquake
locations are calculated and the process is repeated. These iterations usually converge in a few to several
steps. Convergence is determined when the models change by a very small amount between iterations and
travel time differentials get small.

The inversion described above is typically discretized (digitized) by assuming the earth is composed of
blocks, or nodes of points, where the velocity is defined. The integrals in Equation (1) can be discretized
and cast in matrix form. The matrices involved include a data design matrix which describes the way the
raypaths intersect the earth model and the data (travel time perturbations), i.e. the differences between the
observed travel times and calculated times through the current model. New, upgraded, models are derived
by least-squares methods. Since the matrices are very sparse, specialized methods have been developed to
store the data and arrive at an inverse solution with great speed.

The inversion described above is typically discretized (digitized) by assuming the earth is composed of
blocks, or nodes of points, where the velocity is defined. The integrals in Equation (1) can be discretized
and cast in matrix form. The matrices involved include a data design matrix which describes the way the
raypaths intersect the earth model and the data (travel time perturbations), i.e. the differences between the
observed travel times and calculated times through the current model. New, upgraded, models are derived
by least-squares methods. Since the matrices are very sparse, specialized methods have been developed to
store the data and arrive at an inverse solution with great speed.

8.6 Methodology and Inversion

Once all the data are collected and the relationship of the intersecting ray paths with the target region is
discretized and digitized, a set of matrices is typically set up to solve the so called inverse problem: what
earth model would give rise to the travel time residuals observed. If we represent the earth model as a
vector of perturbations (anomalies), x, the interaction of the raypaths with the earth as A, the array of
travel time residuals, ∆t, one can relate the earth to the residuals by the simple linear relationship,

~A~x = ~b (8.6.1)

This matrix equation is solved using a variety of methods depending on the structure of the matrices,
although the specific approach usually does not have a large impact on the resulting images.
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8.7 Synthetic Example using R

Set up libraries used in the following:

library(sp)

library(splancs)

library(RTOMO)

Next we create a synthetic target region and grid where the earthquakes and stations will be distributed.

We set the background velocity to 4.5 km/sec and we create 2 irregular anomalies, one with a 10
percent positive perturbation and one with negative 5 percent anomaly. This is totally arbitrary.

NX = 100

NY = 100

xo = seq(from=1, to=NX, by=1)

yo = seq(from=1, to=NY, by=1)

### v (or s) model

V = 4.5

v1 = V+0.1*V

v2 = V-.05*V

rad = 20

The travel times are calculated by using the slowness in seismology, or 1/velocity.

MOD = matrix(1/V, ncol=NX, nrow=NY)

PHANT = matrix(0, ncol=NX, nrow=NY)

M = meshgrid(xo, yo)

## image(xo, yo, MOD, col="grey")

Two arbitrary, complex anomalous bodies are created. I made these by clicking on the screen a then
saving the points:
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## A1 = locator(type='o', col='black')

A1=list()

A1$x=c(21.4380148625385,22.9678921197393,25.2038665725713,29.0874011485427,

31.5587413332518,40.7380048764569,40.7380048764569,42.0325164017807,

46.1514167096291,50.0349512856005,45.2099537821209,29.2050840144812,

29.7934983441739,33.6770329201453,28.6166696847886,21.9087463262926,

11.6703369896408,8.96363107305464,17.083748822813,15.3185058337351,

7.08070521803821,11.5526541237022,14.2593600402883,15.7892372974892,

17.6721631525056,19.0843575437679)

A1$y=c(55.6872037914692,57.8199052132701,59.0047393364929,

59.0047393364929,55.2132701421801,58.5308056872038,

61.9668246445498,70.6161137440758,74.7630331753555,79.8578199052133,

83.175355450237,88.2701421800948,83.5308056872038,81.9905213270142,

77.4881516587678,77.3696682464455,78.909952606635,71.3270142180095,

70.1421800947867,66.1137440758294,54.5023696682464,49.4075829383886,

51.6587677725119,57.1090047393365,55.0947867298578,52.1327014218010)

## A2 = locator(type='o', col='black')

A2=list()

A2$x=c(90.6355400343922,82.750788016511,72.9831101436132,81.2209107593101,

78.8672534405396,63.9215294663467,55.8014117165883,47.0928796371373,

65.6867724554246,70.9825014226583,57.9197033034818,45.9160509777521,

48.2697082965226,64.9806752597934,72.3946958139206,76.6312789877075,

81.1032278933716,74.8660359986297,86.7520054584209,92.7538316212857)

A2$y=c(39.5734597156398,50.4739336492891,52.60663507109,49.0521327014218,

46.0900473933649,46.563981042654,45.260663507109,35.9004739336493,

37.914691943128,33.175355450237,25.5924170616114,24.2890995260664,

16.8246445497630,15.7582938388626,11.6113744075829,9.12322274881517,

19.4312796208531,24.7630331753554,30.2132701421801,31.3981042654028)

These bodies are saved as geometric outlines and all the points inside the bodies are given the per-
turbation assigned. We used the program inout to extract which points of the model were inside each
body.

mypoly = as.points(as.vector(A1$x) , as.vector(A1$y))

mypoints = as.points(as.vector(M$x),as.vector(M$y))

INTEMP1 = inout(mypoints, mypoly, bound=TRUE )

mypoly = as.points(as.vector(A2$x) , as.vector(A2$y))
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INTEMP2 = inout(mypoints, mypoly, bound=TRUE )

INTEMP = INTEMP1 | INTEMP2

MOD[INTEMP1] = 1/v1

MOD[INTEMP2] = 1/v2

ZEE = t(MOD)

image(xo, yo, ZEE, col=terrain.colors(100) )

############## code

8.8 Station Distribution

Make the stations:

############## code

stax = runif(20, min=1, max=100)

stay = runif(20, min=1, max=100)

image(xo, yo, ZEE, col=terrain.colors(100) )

points(stax, stay, pch=6, col='blue')

8.9 Event (source) Distribution

Make the randomly distributed earthquakes (sources).
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Figure 8.2: Tomographic Phantom (Synthetic model)

NEV = 200

evx = runif(NEV, min=1, max=100)

evy = runif(NEV, min=1, max=100)

#### get random radii for earthquake magnitude

rads = rnorm(NEV, m=50, s=10)

image(xo, yo, ZEE, col=terrain.colors(100) )

points(evx, evy, pch=8, col='red')
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Figure 8.3: (Random) Station Distribution
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Figure 8.4: (Random) Event Distribution

Here we estimate which stations record each event by using the radius (magnitude) of the event:

image(xo, yo, ZEE, col=terrain.colors(100) )

points(evx, evy, pch=8, col='red')
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for(i in 1:length(evx))

{

print(paste(sep=' ', "working on ", i))

dis = sqrt( (evx[i]-stax)^2+(evy[i]-stay)^2)

w = which(dis<rads[i])

if(length(w)>1)

{

segments(evx[i], evy[i], stax[w], stay[w])

}

}

8.10 Prepare the Matrix

Determine the intersection of the raypaths with the model. In 2D this is just the length of the raypath in
the ith block.

COV = list()

k = 0

for(i in 1:length(evx))

{

print(paste(sep=' ', "working on ", i))

dis = sqrt( (evx[i]-stax)^2+(evy[i]-stay)^2)

w = which(dis<rads[i])

if(length(w)>1)

{

segments(evx[i], evy[i], stax[w], stay[w])

for(j in 1:length(w))

{

RAP = get2Drayblox(evx[i], evy[i],stax[w[j]] ,stay[w[j]] ,

xo, yo, NODES=TRUE, PLOT=FALSE)

slns = MOD[cbind(RAP$ix, RAP$iy)]

tt = slns*(RAP$lengs)

k = k+1

COV[[k]] = list(RAP=RAP, tt=tt)
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Figure 8.5: Raypath Distribution
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}

}

}

Add Noise to the data:

####image(xo, yo, ZEE, col=terrain.colors(100) )

#### points(stax, stay, pch=6, col='blue')

###################################################

###################################################

###################################################

NOISE = 0.001

for(i in 1:length(COV))

{

COV[[i]]$noise = rnorm(n=1, m=0, sd=NOISE)

}

###################################################

Now the synthetic data has been created. The data is stored in memory as lists.

The list named COV has the coverage information. That is the travel times and the raypath coverage.
The travel times are in a vector called tt. these are the ‘true’ arrival times. The raypaths are stored in a
second list called RAP. It has the coordinated of each (straight) raypath transecting the model.
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8.11 Inversion by Backprojection

Here we solve the problem,

∆~t =
~~A~s

Here we solve the tomography problem via iterative backprojection. This is the algorithm that I believe
can be made parallel.

8.11.1 Inversion by backprojection

Do 30 iterations, include noise. At each step use the current model and upgrade the velocity.

######

PHANT = matrix(0, ncol=NX, nrow=NY)

for(j in 1:30)

{

print(paste("Iteration", j))

for(i in 1:length(COV))

{

###

oldsln = as.vector(PHANT[cbind(COV[[i]]$RAP$ix, COV[[i]]$RAP$iy)])

slns = (1/V)*(1+oldsln)

t1 = slns*COV[[i]]$RAP$lengs

DT = (COV[[i]]$tt - t1) + COV[[i]]$noise

PHANT[cbind(COV[[i]]$RAP$ix, COV[[i]]$RAP$iy)] =

PHANT[cbind(COV[[i]]$RAP$ix, COV[[i]]$RAP$iy)]+

DT*COV[[i]]$RAP$lengs/(sum(COV[[i]]$RAP$lengs))

}

}
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To illustrate, here is inversion by backprojection using only 1 iteration:

###################################################

PHANT1 = matrix(0, ncol=NX, nrow=NY)

for(i in 1:length(COV))

{

t1 =(1/V)*COV[[i]]$RAP$lengs

DT = (COV[[i]]$tt - t1) + COV[[i]]$noise

PHANT1[cbind(COV[[i]]$RAP$ix, COV[[i]]$RAP$iy)] =

PHANT1[cbind(COV[[i]]$RAP$ix, COV[[i]]$RAP$iy)]+

DT*COV[[i]]$RAP$lengs/(sum(COV[[i]]$RAP$lengs))

}

## screens(2)

##dev.set(dev.next())

Display results: This is the original phantom:

image(xo, yo, ZEE, col=tomo.colors(100) )

polygon(A1)

polygon(A2)

This is the backprojected image with only one iteration:

## dev.set(dev.next())

image(xo, yo, t(PHANT1), col=tomo.colors(100) )

polygon(A1)
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Figure 8.6: Synthetic phantom - this is the “Truth”

polygon(A2)

This is the backprojected image:

## dev.set(dev.next())

image(xo, yo, t(PHANT), col=tomo.colors(100) )
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Figure 8.7: Tomographic inversion result with one backprojected iteration.
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polygon(A1)

polygon(A2)

8.12 Modifications and Improvements

8.12.1 Damping or Regularization

The solution achieved through solving the normal equations may work, but it may fail since noise in the
data corrupts the solution. Some kind of damping should be applied prior to solving equations in the
manner. This is accomplished by adding additional constraint equations to the original matrix inversion
problem. The original formula,

~A~x = ~b

becomes
[

~A
~Θ

]

~x =

[

~b
~0

]

Where Θ is a matrix of constraints, as described above in the discussion of damping as

~Θ =











θ 0 0 · · ·
0 θ 0 · · ·
0 0 θ · · ·
...

...
...

. . .











= θ~I

There is no analytical way to determine the correct damping θ. This should be done by trial and
error, or through experience etc. The damping can be thought of as some kind of a priori information
constraining the inversion. It is saying, in effect, allow perturbations, but do not allow them to be too
large. How large is “too large”? There in lies the problem. Since damping is required because of potentially
destabalizing effects of noise, it may be possible to estimate a good damping parameter based on estiamted
uncertainty in arrival time picks.

8.12.2 Weighting

The equations may (should) not have all the same importance. For example, stations much further away
will experience more attenuation and arrival time determination may be more prone to uncertainty. Some
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Figure 8.8: Tomographic inversion result, 30 iterations. This is the image seen through the inversion
process.
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stations may have known problems or may be located on sites that consistently provide poor arrival time
picks. A weighting matrix ~W is then introduced and mulitplied to account for variable quality of data:

[

~W ~A
~Θ

]

~x =

[

~W~b
~0

]

This set of equations may be solved using a variety of methods including QR-Decomposition, cholesky
decomposition, singular value decomposition, etc.... Note that the inversion is repeated for each step in
the nonlinear convergence process, i.e. each time the event is shifted a new matrix is formed and a new,
perturbed location is derived.
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Ray Tracing

9.1 Raytracing

> options(width=60)

> options(prompt=" ")

options(continue=" ")

options(SweaveHooks=list(fig=function()

par(mar=c(5.1, 4.1, 1.1, 2.1))))

JPOST<-function(file="tmp", width = 8, height = 8)

{

postscript(file=file, width = width,

height = height, paper = "special",

horizontal = FALSE, onefile = TRUE, print.it = FALSE)

}

library(RSEIS)

library(Rquake)

9.2 Rquake

In this document I will illustrate how to use Rquake , a non-linear earthquake location program.

129
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9.3 Data Structures and Lists

9.3.1 Station File

Station location information can be stored in memory (in a list) or in a text file on disk. The station file
is a table, with name, lat, lon, and elevation.

For example:

fsta = "/home/lees/Site/CHAC/staLLZ.txt"

### system(paste(sep=" ", "cat", fsta), intern = TRUE )

CHAC0 -0.39377412 -78.15369741 3588

CHAC1 -0.366526404 -78.16962049 3606

CHAC2 -0.42485567 -78.2710065 4020

CHAC3 -0.4524493 -78.18676153 4328

CHAC4 -0.461317213 -78.21783387 4412

CHAC5 -0.351938598 -78.21809574 4000

CHAC6 -0.408928292 -78.20667762 3860

CHAC7 -0.39837847 -78.22075601 4109

CHAC8 -0.382639731 -78.2023599 3767

CHAC9 -0.323852103 -78.15061344 3762

These can be scanned in R with a simple command.

See REIS for more details on stations.

If the stations are in UTM coordinates, you may convert to Lat-Lon using the GEOmap package.

stas = scan(file=fsta,what=list(name="", lat=0, lon=0, z=0))

stas$z = stas$z/1000

Units in Rquake are in km, so the meters are converted.
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REIS has a function for reading in the stations:

stas = setstas("stas")

9.3.2 Velocity Structure

The one-dimensional velocity model is also stored in file (or stored in memory in an R session). See
REIS for details.

Sample velocity model stored on disk. In this case no estimates of error are provided, so they are set
to zero. If S-wave velocity is not available, can use Vs = Vp/

√
3.

#MODEL WU COSO REGINAL FINE LAYERS REGIONAL VELOCITY MODEL

#P DEPTH P VEL PERR S DEPTH S VEL SERR

0.00 4.50 0.00 0.00 2.43 0.00

0.50 4.51 0.00 0.50 2.59 0.00

1.00 4.92 0.00 1.00 2.97 0.00

1.50 4.92 0.00 1.50 2.97 0.00

2.00 5.46 0.00 2.00 3.15 0.00

2.50 5.46 0.00 2.50 3.15 0.00

3.00 5.54 0.00 3.00 3.27 0.00

3.50 5.54 0.00 3.50 3.27 0.00

4.00 5.58 0.00 4.00 3.42 0.00

5.50 5.58 0.00 5.50 3.42 0.00

12.00 6.05 0.00 12.00 3.49 0.00

20.00 7.20 0.00 20.00 4.15 0.00

The following is a constructor for making a 1D velocity model suitable for use in RSEIS and Rquake:

VEL=list()

VEL$'zp'=c(0,0.25,0.5,0.75,1,2,4,5,10,12)

VEL$'vp'=c(1.1,2.15,3.2,4.25,5.3,6.25,6.7,6.9,7,7.2)

VEL$'ep'=c(0,0,0,0,0,0,0,0,0,0)

VEL$'zs'=c(0,0.25,0.5,0.75,1,2,4,5,10,12)

VEL$'vs'=c(0.62,1.21,1.8,2.39,2.98,3.51,3.76,3.88,3.93,4.04)

VEL$'es'=c(0,0,0,0,0,0,0,0,0,0)

VEL$'name'='/data/wadati/lees/Site/Hengil/krafla.vel'
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There are several default velocity models available in REIS . Function defaultVEL(i) will return one
of 6 “standard” models used for different purposes.

If you have a velocity model on disk, you can read it in with REIS function, Get1Dvel.

To compare a set of different velocity models visually, try,

data(ASW.vel)

data(wu_coso.vel)

data(fuj1.vel)

data(LITHOS.vel)

These can be plotted with the routine:

Comp1Dvels(c("ASW.vel","wu_coso.vel", "fuj1.vel" , "LITHOS.vel" ))

9.3.3 Arrival Time List

The arrival times, or the picks are stored in in list mode, i.e. a list of vectors each with attributes relating
to the arrival time pick.

These vectors are described as:

tag character tag the should be unique

name character, station name

comp character, component name

c3 character, three-component station id sta.hhh.BHZ

phase character, phase name

err numeric, error

pol character polarity, U, D, 0
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Figure 9.1: Comparison of 4 sample velocity models
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flg numeric, flag, used in location

res numeric, travel time residual relative to model

dur numeric, duration

yr numeric, year

mo numeric, month

dom numeric, day-of-month

jd numeric, julian day

hr numeric, hour

mi numeric, minute

sec numeric, second

col numeric, or character, color for plotting in RSEIS

onoff numeric, less than 0 means do not use

A constructor for creating an empty pick list is cleanWPX. For many of the functions in RSEIS and
Rquake the list must contain filled vectors for each element. use function repairWPX to fill out list elements
that are deficient.

The arrival time list has one attribute, the “ID”. This can be used to identify earthquake with a unique
tag or identifaication number or name.

For Rquake , the elements that are absolutely required are: name, phase, err, sec.

There are many different ways to store arrival time picks. It does not matter how these are stored, as
long as they are read into R and formatted properly. By disassociating the input format from the analysis,
we can simply write a short input, or conversion, routine to use all the codes as is.

We can thus store the data in any format we desire, perhaps for use in other non-R software.

Native (binary) R

The output of swig is binary R file, so the data can simply be loaded automatically.
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UW format Pickfiles

loadUWpickfiles is a function that reads in a list of pickfiles stored on disk and returns a list of picked
events.

Since UW pickfiles store the times relative to a common minute mark, and station information is not
stored in the pickfile, this information is filled out in the code:

KF = vector(mode="list")

for(i in 1:length(LF))

{

g1 = getpfile(LF[i])

m1 = match(g1$STAS$name, stas$name)

g1$STAS$lat = stas$lat[m1]

g1$STAS$lon = stas$lon[m1]

g1$STAS$z = stas$z[m1]

w1 = which(!is.na(g1$STAS$lat))

sec = g1$STAS$sec[w1]

N = length(sec)

Ldat = list(name = g1$STAS$name[w1],

sec = g1$STAS$sec[w1],

phase = g1$STAS$phase[w1],

lat = g1$STAS$lat[w1],

lon = g1$STAS$lon[w1],

z = g1$STAS$z[w1],

err = g1$STAS$err[w1],

yr = rep(g1$LOC$yr, times = N),

jd = rep(g1$LOC$jd, times = N),

mo = rep(g1$LOC$mo, times = N),

dom = rep(g1$LOC$dom, times = N),

hr = rep(g1$LOC$hr, times = N),

mi = rep(g1$LOC$mi, times = N))

Ldat$err[Ldat$err <= 0] = 0.05

Ksta = length(unique(Ldat$name))

### cat(paste("################# ", i, Ksta), sep = "\n")

Ldat = LeftjustTime(Ldat)

KF[[i]] = Ldat
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}

CSV Pickfiles



Chapter 10

Scattering

10.1 Zoeppritz Equations

10.2 Zoeppritz Equations

When a seismic wave impinges on an flat interface some of the energy is transmitted into the layer below
and sme of the energy is reflected back. The relative proportion of energy converted into different aspects
of P and S-wave can be decribed by a a set of equations set forth in the classic text book by Aki and
Richards [?]Aki2002). Zoeppritz are also known as Knott’s Equations.

To calculate the associated matrix of incoming and outgoing amplitudes with different incident angles,
first we set up the velocity model at the interface. These are the α, β, ρ illustrated in figure 10.1 above and
below the interface.

############## set up a velocity model

### layer 1:

library(zoeppritz)

alpha1 = 4.98

beta1 = 2.9

rho1 = 2.667

########## layer 2

137
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ρ1 α1 β1

ρ2 α2 β2

S1 ↓

P1 ↓

P2 ↑

S2 ↑

S1 ↑
P1 ↑

P2 ↓
S2 ↓

Figure 10.1: Figure from Aki and Richards showing incoming P and SV waves to the interface.

alpha2 = 8.0

beta2 = 4.6

rho2 = 3.38

Then the program is called that calculates the scattering coefficients and plots the result:

App = pzoeppritz( "Amplitude" , alpha1, alpha2, beta1,

beta2, rho1 ,rho2, "P", "ALL");

dev.off()

Next we change the outgoing waves to S-waves:

Incident wave in high velocity layer
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Figure 10.2: P-wave incoming, show all the outgoing amplitudes.

Next we change the outgoing waves to S-waves:
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Figure 10.3: S-wave incoming, show all the outgoing amplitudes.
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Figure 10.4: High velocity above low velocity. P-wave incoming, show all the outgoing amplitudes.



142 CHAPTER 10. SCATTERING

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Angle of Incidence

A
m

pl
itu

de

α1 = 8
β1 = 4.6
ρ1 = 3.38
α2 = 4.98
β2 = 2.9
ρ2 = 2.667

P−reflected
S−reflected
P−refracted
S−refracted

S S P

S P

Figure 10.5: High velocity above low velocity. S-wave incoming, show all the outgoing amplitudes.
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