
RSEIS: Seismic Time Series Analysis in R

Jonathan M. Lees
University of North Carolina, Chapel Hill

Department of Geological Sciences
CB #3315, Mitchell Hall

Chapel Hill, NC 27599-3315
email: jonathan.lees@unc.edu

ph: (919) 962-1562

1 MakeDB

In this document I will illustrate how to create a simple flat database for use in REIS . The data base is constructed
from files, usually SEGY or SAC, but they could be native R files already processed so that conversion is not
necessary (better still).

2 File Structure

The basic structure for this code is based on the output of a program written by PASSCAL called ref2segy (or
ref2sac). After extracting data from disks in the field the “ref” files are dumped into a directory on the hard drive of
a computer. The program ref2segy extracts the data from messy reftek format, and converts them to SEGY format.
A log is created and other output useful for getting information about the field operations. For now we do not need
to pay attention.

As an example, the files for my 2009 santiaguito experiment in Guatemala are stored on my computer as:

wegener% ls
/home/lees/Site/Santiaguito/SG09
#########################
segyDB R365.02/ 2009:019:15:39.9026.log 2009:007:17:11.run
filesDB R366.02/ 2009:019:15:39.run 2009:007:17:11.SMI.log
R001.02/ R006.02/ 2009:007:17:12.CAL.log 2009:007:17:11.KAM.log
R002.02/ 2009:019:15:40.9024.err 2009:007:17:12.run 2009:007:17:10.KAM.log
R003.02/ 2009:019:15:40.9024.log 2009:007:17:12.DOM.log 2009:007:17:10.run
R004.02/ 2009:019:15:40.run 2009:007:17:11.DOM.err 2009:007:17:10.CAL.err
R005.02/ 2009:019:15:39.9026.err 2009:007:17:11.DOM.log 2009:007:17:10.CAL.log

1

The actual waveform files are in the directories starting with “R00” etc. The Julian day is on each folder name.
This data was recorded in late December, 2008 and into January 2009. so the high julian days are at the beginning
of the experiment and the low day numbers at the end. (The spanning of the new year actually presents some date
problems that need to be overcome.)

For example, a listing of one of the subdirectories is:

wegener% ls
/home/lees/Site/Santiaguito/SG09/R002.02
#########################
09.002.00.47.50.CAS.I
09.002.00.47.50.CAS.J
09.002.00.47.50.CAS.K
09.002.01.47.50.CAS.I

Note that the files have already been altered, in that information from the headers has been placed in the file
names. This is not critical, but it is important to get information about the station name and component into the
file headers.

3 I/O in REIS

The I/O routines in REIS read in binary data from disk and store the data in lists for processing. The data is
generally organized for manipulation of earthquake seismic data, but there is no specific restriction.

The routimes for extracting data in SEGY and SAC format use the binary I/O native to R , specifically readBin.
It is important for the user to know which conventions were used on the machine that created the binary files as
well as the conventions used on the machine reading the binary files. Care must be taken to correctly associate the
“endianness” and “size of LONG” integers on the data creating and the data reading systems. See below on how to
accomodate the differences in these systems.

4 makeDB

The program makeDB will read in the data once its is told where to look, what to look for and what format to use.

The call uses a path and pattern to read in the data, file by file and store the header (and other) information for
quick access. The path variable is a pointer to the base location of the data to be extracted. The pattern argument
is used to direct the the program to read in some information and ignore extraneous folders or files. In this example,
all the data is stored in directories starting with “R0” so the pattern is simple. We use a wild card to get all the
folders for this experiment.

path = '/home/lees/Site/Santiaguito/SG09'
pattern = "R0*"

2

XDB = makeDB(path, pattern, kind =1)

The other parameters are critical and care must be taken to make sure they are executed correctly. The default
parameters are:

� kind = 1

� Iendian = 1,

� BIGLONG = FALSE

4.1 kind

The kind argument signals REIS that the data is a specific format. The standards now are

� 1=SEGY

� 2=SAC

� 0=native RSEIS

The program reads in each file, extracts station name, component, sample rate and timing information from the
files and saves these in a list. The SEGY and SAC formats are read in using native R binary read commands. If the
data is already in REIS format, then the processing uses R command load to read the data in and extract from
the list already available.

The two other arguments relate to the format that the data is stored in and depend on the computer system they
are read on. Attention must be paid to the system where the binary data was created and the system that is trying
to read the binary data. (If the data are in RSEIS native format this does not apply.) Without proper handling, the
I/O codes for reading the data will not work and may cause the system to crash.

4.2 Iendian

Iendian is a flag indicating the endian-ness of the data and whether swapping needs to be performed.

The following definition and example are taken from: http://cplus.about.com/od/glossar1/g/Endian.htm

Definition: Endian-ness refers to the layout of (usually) bits in CPUs and affects the layout of multi byte
numbers, particularly integers. There are two schemes that really matter- big endian and little endian. PCs for
example are little endian (which means little end first). Motorola processors used in Macs (until the switch to Intel
processors) were big endian.

For example, the decimal int 56789652 is 0x03628a94 in hexadecimal. On a big endian PC the 4 bytes in memory
at address 0x18000 start with the leftmost hex digit. Each 8 bit memory location holds one hexadecimal number in
the range 0x00 to 0xxFF.

3

Big Endian
18000 18001 18002 18003
0x03 0x62 0x8a 0x94

Little Endian
18000 18001 18002 18003
0x94 0x8a 0x62 0x03

From the readBin documentation in R :

endian: The endian-ness ('"big"' or '"little"' of the target system
for the file. Using '"swap"' will force swapping
endian-ness.

The byte-order (“endian-ness”) is different for different operating systems. You can determine the endianness of
a system by accessing the R .Platform list of system parameters:

> .Platform$endian

[1] "little"

If the data was written on a little endian machine, then the little option should be provided. Likewise id big
endian was used to create the data, and the machine reading it is also big-endian, then use big. If the machine
writing the data and the machine reading the data use different conventions, then “swap” should be invoked.

4.3 BIGLONG

The BIGLONG variable is set so that data written with long=8 on a machine with long=4 can be accomodated.
This problem arises mainly with SAC format data as the header for SAC data calls for a long (8 bytes), even though
most 32 bit machines actually use long=short (4 bytes). To determine what convention a particular operating system
is using one can query the .Machine list in R :

> .Machine$sizeof.long

[1] 4

If the size is 8 use TRUE, if 4 use FALSE.

IMPORTANT NOTE: If you get your data from someone else, or you download the binary files from elsewhere
(e.g. PASSCAL), you need to determine how to set these parameters. Having the wrong arguments may lead to
R crashing, or even crashing the whole system.

4

5 Extracting Data

The purpose of makeDB is to allow quick and easy access to the data files and to make it easy to extract time slices
from the large set of files.

The database is simply a list of vectors giving information on where to find a particular file on the computer,
the times, station and component in each file. The data can be accessed using this database sequentially, or different
combinations of files can be sorted and ordered according to the needs of the user.

The REIS program I use for small data sets, like the one illustrated above, is called Mine.seis.

With Mine.seis you give it the database and it finds the files that need to be accessed, extracts the waveforms
and glues the files together to get a single trace for each station/component. This list is suitable for plotting and
processing in swig (swig=seismic wiggle).

See the documentation for makeDB and Mine.seis to get the full instructions and examples of ow to use.

5.1 Example 1

As an example here is the code used to extract data from my Karymsky data set. The database is in list “k97DB”. I
want to extract 24 hours of data, one hour at a time. I want to see only one station (“kar1”) and only components 1
(infrasound) and 4 (vertical). The loop cycles through the traces and gives me a chance to quit if I hit the “QUIT”
button in swig.

k97DB = makeDB("/home/beer/lees", "R*", kind=1)

for(i in 1:24)
{
at1 = 232+(i-1)/24
at2 = at1+1/24

GH = Mine.seis(at1, at2, k97DB, "kar1", c("4", "1"))
w = swig(GH)
if(identical(w$but, "QUIT"))break
}

5.2 Example 2

The we use data from the SIGNET experiment that spans 2 years of deployment. There are hundreds of files
downloaded from the IRIS DMC. In this case I felt that makeDB was not an effective way of storing the data and
searching. Instead I wrote a specialized database for more efficient retrieval of the relavant files.

5

In this example the dataset is very large. there are 18 stations, each recording at different sample rates. The
record lengths have been fixed at one hour per file.

The data is stored in a top directory with each station in its own subdirectory. This organization is not convenient
for searching for time slices. To get around this problem we created a new database of the file structure, this time
based on julian day. In this case, given a time slice, we will only have to search through a much smaller subset of
the file names to extract the information we need.

The “database” is simply a list of the files organized first by day and then by station, where the base file names
contain the start time of each trace. Given a time slice, i.e. an event time with a pre and post-event span, extract
the names of files that fall within that time, read in the traces, cut them down to match the desired times. Then
return a swig-compatable structure.

LISTday is a list consisting of each day's seismic data

program to mine the data

signet.mine<-function(LISTday, STA=NULL, COMP=NULL, yr=2009, day=288, hr=0, min=0, sec=0,
bef=10*60, aft=50*60, d1="/home/lees/SIGNET-GALAPAGOS")

{

NDAYS = names(LISTday)

R1 = recdate(jd = day, hr = hr, mi = min, sec = sec-bef, yr = yr)
R2 = recdate(jd = day, hr = hr, mi = min, sec = sec+aft, yr = yr)

count up number of hours needed
sdif = ceiling(((aft-bef)/3600))+1

collect all hours of relevance
zipper = vector()

for(i in 1:sdif)
{
R3 = recdate(R1$jd, (R1$hr+(i-1)), mi = 0, sec = 0, yr = R1$yr)

slapit1 = paste(sep=".",formatC(R3$yr, format="d", flag="0", width=4),
formatC(R3$jd, format="d", flag="0", width=3),
formatC(R3$hr, format="d", flag="0", width=2))

slapit2 = paste(sep=".",formatC(R3$yr, format="d", flag="0", width=4),
formatC(R3$jd, format="d", flag="0", width=3))

gday = grep(slapit2, NDAYS)
g = grep(slapit1, LISTday[[gday]])
zip = LISTday[[gday]][g]

select station and or component
if(!is.null(STA)) zip = grep(STA, zip, value = TRUE)
if(!is.null(COMP)) zip = grep(COMP, zip, value = TRUE)

zipper = c(zipper, paste(d1, zip, sep="/"))
}

6

########## read in the binary data
U1 = JSAC.seis(zipper, Iendian = 1 , BIGLONG=FALSE , PLOT = FALSE)

glue the traces that are the same station and component
RR = GLUE.GET.seis(U1)

####### convert this list into a more detailed list used by swig
GH = prepSEIS(RR)

chop window down to size

G1 = getGHtime(GH, wi=which.min(GH$info$off))
t1 = secdifL(G1, R1)
t2 = secdifL(G1, R2)
secdifL(R1, R2)
HH = CHOP.SEISN(GH, WIN = c(t1, t2))

invisible(HH)
}

To extract data we use the above program along with time schedule.

############### schedule
Yr = 2010

schedule=seq(from=280, to= 288, by=1/24)

for(i in 100:length(schedule))
{

at1 = schedule[i]
rat1 = recdate(jd=at1, hr=0, mi=0, sec=0, yr=Yr)

HH = signet.mine(LISTday, STA=NULL, COMP=NULL, yr=2010, day=rat1$jd,
hr=rat1$hr, min=rat1$mi, sec=rat1$sec,
bef=30*60, aft=50*60, d1="/home/lees/SIGNET-GALAPAGOS")

SOUT = swig(HH , sel=which(HH$COMPS=="V") , filters=thefilts)
}

7

