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1 Introduction

Earthquake location is a nonlinear process: Usually it is accomplished by performing a sequence of
linear inversions to converge to a location that minimizes the residual misfit. Event determination
requires several pieces of information to successfully locate an earthquake: observed arrival time
estimates, station locations, a velocity model and, in some cases, a set of station corrections.

Station locations should be provided in terms of Name, Latitude, Longitude and Depth. In
some cases several stations may be located at the same location but at different depths (elevation)
so these are usually distinguished by some naming convention. Location programs may involve
projection of the datainto cartesion coordinates or, in some programs, the processing is done with
lat-lon pairs instead. Usually the station locations are stored in a file on disk, as a table or in some
other form that can be accessed and stored in memory.

The velocity model is commonly a one-dimensional, layered model, although recently three-
dimnesional models are used. Since the location procedure must estimate the travel time from
the event to the stations ray-tracing or some other method must be used to make the travel time
predictions. In the case of one-dimensional velocity model estimating travel times is relatively simple
and the RSEIS package provides routines to accomplish this. The velocity model is typically a table
with depth and associated P-wave velocity for a given layer. Often S-wave velocities are provided,
although if they are not available a standard approximation is Vs = Vp/

√
3 which is known as a

Poisson solid. Package Rquake has several built in velocity models that can be used initially if a
derived one is not available.

Phase arrival times are typically determined from displays of seismic data. Essentially all that is
needed is the arrival time, in seconds relative to some origin of each station for each phase. Software
in RSEIS can be used to extract arrival times. Additional information may include the polarity of
the P-wave arrival used for focal mechanism determination.

2 Rquake

In this document I will illustrate how to Rquake, a non-linear earthquake location program.
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3 Data Structures and Lists

3.1 Station File

Station location information can be stored in memory (in a list) or in a text file on disk. The station
file is a table, with name, lat, lon, and elevation.

For example:

fsta = "/Users/lees/Mss/SEIS_BOOK/RQUAKE/data/staLLZ.txt"

### system(paste(sep=" ", "cat", fsta), intern = TRUE )

CHAC0 -0.39377412 -78.15369741 3588

CHAC1 -0.366526404 -78.16962049 3606

CHAC2 -0.42485567 -78.2710065 4020

CHAC3 -0.4524493 -78.18676153 4328

CHAC4 -0.461317213 -78.21783387 4412

CHAC5 -0.351938598 -78.21809574 4000

CHAC6 -0.408928292 -78.20667762 3860

CHAC7 -0.39837847 -78.22075601 4109

CHAC8 -0.382639731 -78.2023599 3767

CHAC9 -0.323852103 -78.15061344 3762

These can be scanned in R with a simple command.

See REIS for more details on stations.

If the stations are in UTM coordinates, you may convert to Lat-Lon using the GEOmap package.

fsta = "/Users/lees/Mss/SEIS_BOOK/RQUAKE/data/staLLZ.txt"

### system(paste(sep=" ", "cat", fsta), intern = TRUE )

stas = scan(file=fsta,what=list(name="", lat=0, lon=0, z=0))

stas$z = stas$z/1000
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Units in Rquake are in km, so the meters are converted.

REIS has a function for reading in the stations:

stas = setstas("stas")

3.2 Velocity Structure

The one-dimensional velocity model is also stored in file (or stored in memory in an R session).
See REIS for details.

Sample velocity model stored on disk. In this case no estimates of error are provided, so they
are set to zero. If S-wave velocity is not available, can use Vs = Vp/

√
3.

#MODEL WU COSO REGINAL FINE LAYERS REGIONAL VELOCITY MODEL

#P DEPTH P VEL PERR S DEPTH S VEL SERR

0.00 4.50 0.00 0.00 2.43 0.00

0.50 4.51 0.00 0.50 2.59 0.00

1.00 4.92 0.00 1.00 2.97 0.00

1.50 4.92 0.00 1.50 2.97 0.00

2.00 5.46 0.00 2.00 3.15 0.00

2.50 5.46 0.00 2.50 3.15 0.00

3.00 5.54 0.00 3.00 3.27 0.00

3.50 5.54 0.00 3.50 3.27 0.00

4.00 5.58 0.00 4.00 3.42 0.00

5.50 5.58 0.00 5.50 3.42 0.00

12.00 6.05 0.00 12.00 3.49 0.00

20.00 7.20 0.00 20.00 4.15 0.00

The following is a constructor for making a 1D velocity model suitable for use in RSEIS and
Rquake:

VEL=list()

VEL$'zp'=c(0,0.25,0.5,0.75,1,2,4,5,10,12)

VEL$'vp'=c(1.1,2.15,3.2,4.25,5.3,6.25,6.7,6.9,7,7.2)

VEL$'ep'=c(0,0,0,0,0,0,0,0,0,0)

VEL$'zs'=c(0,0.25,0.5,0.75,1,2,4,5,10,12)

VEL$'vs'=c(0.62,1.21,1.8,2.39,2.98,3.51,3.76,3.88,3.93,4.04)
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VEL$'es'=c(0,0,0,0,0,0,0,0,0,0)

VEL$'name'='/data/wadati/lees/Site/Hengil/krafla.vel'

There are several default velocity models available in REIS . Function defaultVEL(i) will return
one of 6 “standard” models used for different purposes.

If you have a velocity model on disk, you can read it in with REIS function, Get1Dvel.

To compare a set of different velocity models visually, try,

data(ASW.vel)

data(wu_coso.vel)

data(fuj1.vel)

data(LITHOS.vel)

Comp1Dvels(c("ASW.vel","wu_coso.vel", "fuj1.vel" , "LITHOS.vel" ))

dev.off()

3.3 Arrival Time List

At the most basic level, all that is required to estimate a hypocenter is relative time of arrival at
each station. The arrival times, or the picks are stored in in list mode, i.e. a list of vectors each
with attributes relating to the arrival time pick.

These vectors are described as:

tag character tag the should be unique

name character, station name

comp character, component name

c3 character, three-component station id sta.hhh.BHZ

phase character, phase name

err numeric, error
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Figure 1: swig example with Reventador Data
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pol character polarity, U, D, 0

flg numeric, flag, used in location

res numeric, travel time residual relative to model

dur numeric, duration

yr numeric, year

mo numeric, month

dom numeric, day-of-month

jd numeric, julian day

hr numeric, hour

mi numeric, minute

sec numeric, second

col numeric, or character, color for plotting in RSEIS

onoff numeric, less than 0 means do not use

A constructor for creating an empty pick list is cleanWPX. For many of the functions in RSEIS
and Rquake the list must contain filled vectors for each element. use function repairWPX to fill out
list elements that are deficient.

The arrival time list has one attribute, the “ID”. This can be used to identify earthquake with
a unique tag or identifaication number or name.

For Rquake , the elements that are absolutely required are: name, phase, err, sec. One can
construct the input list from these elements by putting in arbitrary information for the other pasts
of the list. Once the event and relative time shift is estiamted, these can be added or subtracted
from guess origin time.

There are many different ways to store arrival time picks. It does not matter how these are
stored, as long as they are read into R and formatted properly. By disassociating the input format
from the analysis, we can simply write a short input, or conversion, routine to use all the codes as
is.

We can thus store the data in any format we desire, perhaps for use in other non-R software.
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3.3.1 Native (binary) R

The output of swig is binary R file, so the data can simply be loaded automatically.

3.3.2 UW format Pickfiles

loadUWpickfiles is a function that reads in a list of pickfiles stored on disk and returns a list of
picked events.

Since UW pickfiles store the times relative to a common minute mark, and station information
is not stored in the pickfile, this information is filled out in the code:

KF = vector(mode="list")

for(i in 1:length(LF))

{

g1 = getpfile(LF[i])

m1 = match(g1$STAS$name, stas$name)

g1$STAS$lat = stas$lat[m1]

g1$STAS$lon = stas$lon[m1]

g1$STAS$z = stas$z[m1]

w1 = which(!is.na(g1$STAS$lat))

sec = g1$STAS$sec[w1]

N = length(sec)

Ldat = list(name = g1$STAS$name[w1],

sec = g1$STAS$sec[w1],

phase = g1$STAS$phase[w1],

lat = g1$STAS$lat[w1],

lon = g1$STAS$lon[w1],

z = g1$STAS$z[w1],

err = g1$STAS$err[w1],

yr = rep(g1$LOC$yr, times = N),

jd = rep(g1$LOC$jd, times = N),

mo = rep(g1$LOC$mo, times = N),

dom = rep(g1$LOC$dom, times = N),

hr = rep(g1$LOC$hr, times = N),

mi = rep(g1$LOC$mi, times = N))

Ldat$err[Ldat$err <= 0] = 0.05

Ksta = length(unique(Ldat$name))

### cat(paste("################# ", i, Ksta), sep = "\n")
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Ldat = LeftjustTime(Ldat)

KF[[i]] = Ldat

}

3.3.3 CSV Pickfiles

An example comma-separated-value file (csv), might look like this:

> cat 2011_11_21_12_14_20_683433.csv

"","tag","name","comp","c3","phase","err","pol","flg","res","dur","yr","mo","dom","jd","hr","mi","sec","col","onoff"

"1","CHAC1","CHAC1","V",0,"G",0,"_",0,0,0,2011,11,21,325,12,14,20.6834335327148,"#0000FF",1

"2","CHAC2","CHAC2","V",0,"G",0,"_",0,0,0,2011,11,21,325,12,14,50.691351890564,"#0000FF",1

"3","CHAC6","CHAC6","V",0,"G",0,"_",0,0,0,2011,11,21,325,12,15,14.6926865577698,"#0000FF",1

"4","CHAC8","CHAC8","V",0,"G",0,"_",0,0,0,2011,11,21,325,12,15,44.7056050300598,"#0000FF",1

Note the quotes surrounding the text strings. These are not strictly required, but if the funciton
read.csv (next secion) is used they are required. The exact nature of the input format is not critical
to RSEIS. Rather, leave the data in the format you prefer and write a short script to read it in and
put the information in the proper list structure.

4 Example

Suppose you have a set of arrival at the stations of a network.

This solution is based on three non-linear inversions. Each non-linear inversion uses the SVD
solution to iterate to a point where the residuals are minimized.

In each case the solution from the previous inversion used as the starting point for the next step.

1. inversion locates only the X-Y-T coordinates.

2. allows the depth to vary.

3. attempts a detailed inversion.

Next, extract information to make a plot.
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MLAT = median(Ldat$lat)

MLON = median(Ldat$lon)

EQ =AQ$EQ

proj = setPROJ(type=2, LAT0=MLAT, LON0=MLON)

#### get station X-Y values in km

XY = GLOB.XY(stas$lat, stas$lon, proj)

eXY = GLOB.XY(EQ$lat, EQ$lon, proj)

plotEQ(Ldat, AQ, add=FALSE, prep=FALSE, proj=proj, xlim=NULL, ylim=NULL )

J = EmptyPickfile()

J$STAS = Ldat

col=tomo.colors(100)

contPFarrivals(J, stas, proj=proj,cont=TRUE, POINTS=FALSE,

image=FALSE , col=col, phase="P", add=TRUE)

dev.off()
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Figure 2: Earthquake location example
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4.1 Jackknifing the Event Location

In many cases a station may have an undue influence on the earthquake location. In this case we are
interested in estimating what the influence is and how it might affect the hypocenter determination.

A technique called the “Jackknife” is commonly used to provide such an estimate. The Jackknife
was created to provide estimates of parameters that do not have a simple aalytical solution. This
may be especially important for estimating the variance of a parameter. This technique was named
Jacknife because of its power and usefulness in exploratory data analysis.

In the estimated model, errors arise from inaccurate measurements, incomplete coverage of rays
over the target area, over simplified parameterization and mislocation of the earthquakes. In classical
least squares discussed above, one can show that an estimate for the error in the model is found in
the covariance matrix, cov(s) = ss

T . If the estimated variances of the weighted observations is a

constant value σ2, then it can be shown formally that cov(s) = σ2
(

A
T
A

)

−1
[Menke, 1984]. As

before, the matrix
(

A
T
A

)

−1
is generally not available due to limitations in computer storage and

space, thus leaving us with no estimate for the uncertainties inherent in the slowness structures we
derive.

The approach used in this research to estimate the uncertainties in the inversion images is derived
from techniques developed for statistical applications and is commonly known as the jackknife,
named so for its rough and ready usefulness [Schucany et al., 1971]. The method is described thus:
suppose we are given n identically independent random variables {X1, X2, · · · , Xn} and we wish to
estimate the value of a parameter, θ̂ = θ̂ (X1, X2, · · · , Xn), e.g. a statistic on the data such as the
mean, median or correlation coefficient (θ̂ represents an estimate of the true value θ). We form a
set of intermediate estimates by considering the values of θ̂(i) calculated by leaving out the i − th
datum, i.e.

θ̂(i) = θ (X1, X2, · · · , Xi−1, Xi+1, · · · , Xn) (4.1)

A set of ‘pseudo-values’ is created by considering the weighted sum,

θ̃(i) = nθ̂ − (n − 1)θ̂(i) (4.2)

and the jackknife estimate of the parameter th is the arithmetic mean of the pseudo-values:

θJACK =
1

n

n
∑

i=1

θ̃(i) (4.3)

The historical motivation for this formulation stems from an attempt to estimate the bias for
many common statistics, particularly quadratic functionals [Quenouille, 1949; Efron, 1982]. Only
later did researchers [Tukey, 1958] realize the more important use of the jackknife in estimating
variability of model parameters. Heuristically, the form of Eqn 4.3 stems from noting that each
pseudo-value measures the influence a particular datum has on estimating the model parameter by
forming the linear combination of the estimates with and without the particular datum.
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In the tomographic setting the jackknife involves partitioning the set of observations into subsets,
performing inversions on the subsets, and calculating a standard error from the set of image vectors
that result. Instead of leaving out one datum per inversion, we divide the data into k subsets with
each group containing n− n

k
data values where the n

k
values omitted are chosen without replacement

from the original data set. Each subset then has a different portion of the full data set missing.
We then perform an inversion for each of the k subsets and denote the slowness image derived from
such an inversion ŝj. From these ‘mini-inversions’ a ‘pseudo-inversion’ is formed following equation
Eqn 4.3:

s̃j = kŝall − (k − 1)ŝj (4.4)

The jackknifed estimate of the slowness is simply the average of the pseudo-inversions:

s̃ =
1

k

(

k
∑

j=1

s̃j

)

(4.5)

which has variance,

υ =

∑

s̃2
j − 1

k
(
∑

s̃j)
2

k(k − 1)
(4.6)

Given the variance, the standard error is Eσ =
√

υ. This will be an estimate of the variability of
the model due to the variability and distribution of the data. Presently there is no clear cut way to
determine the optimal choice of k, the number of mini-inversions to perform. One would guess the
larger k is the better, but very large k implies performing large numbers of inversions, which would
be extremely time consuming and provide little advantage over computing errors in the classical
fashion. A compromise can be struck if we assume that the variability in the pseudo-inversions
will be represented in far fewer partitions of the data. In this study I have found k = 30 to be a
reasonable for estimation of errors on the real data. In order to avoid the influence of any special
ordering, the partitions are chosen randomly for each subset.

To get the jackknife estiamte for the location parameters lat-lon-z we have a routine in the
RQUAKE package. A list of earthquake pickfiles are provided to the code and each event is jack-
knifed individually. the results aresaved and summarized so that station influence can be estiamted.

First the locations are jackknifed,

Then they are plotted with two plots, one showing the boxplots of the results fro each station,
the second showing a controur of the median values for each station distrbuted in map view.

plotJACKLLZ(COSOjack, sta, proj, PLOT=1, PS=TRUE)

plotJACKLLZ(COSOjack, sta, proj, PLOT=2, PS=TRUE)
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Figure 3: Jackknife estimate of earthquake location parameters, LAT-LON-Z
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Figure 4: Jackknife estimate of earthquake location parameters, LAT-LON-Z
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