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1 Tomographic Inversion: Introduction

Seismic tomography uses the travel time of elastic waves to probe the internal
structure of the earth. It differs from traditional medical tomography in four
major aspects: 1) acoustic signals travel in highly curved raypaths in media
that vary in 3-dimensions, 2) the travel time is a non-linear function of the
velocity field (“velocity” field in the seismic sense is the scalar wave speed), 3)
when the sources are earthquakes, the distribution of rays covering the target
cannot be controlled and is often highly inhomogeneous and 4) uncertainties
in the travel time exist because the source location and origin time must be
determined from the observations themselves. These differences indicate that
special care must be taken when techniques borrowed from the medical field
are applied to seismic data. Specifically, due to the non-uniform distribution
of sources and receivers, the convolutional techniques of inversion, common
in medical tomography, are inapplicable in the seismic case and iterative
approaches are used instead.

In this demonstration we show how to set up a synthetic 2D tomographic
modeling experiment and perform the inversion via matrix inversion.

2 History

Tomography (literally, ‘slice picture’) originated in radio astronomy as a
method to image aspects of remote regions of the universe. Later physi-
cists and bio-physicists collaborated to create the first methodology and in-
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strumentation that led to the first tomographic analysis of live tissue, es-
pecially human bodies. This approach was called ‘computer aided tomog-
raphy’ or CAT scans. Researchers who pioneered these methods received
the Nobel Prize in physiology and medicine in 1979 (Allan Cormack and
Godfrey Hounsfield). At the same time seismologists recognized that similar
methodology could be applied to imaging the earth. Early papers on these
approaches were not called tomography, but simply ‘three-dimensional anal-
ysis’. It was not until the early 1980’s that data sets large enough to actually
mimic an approach similar to medical tomography emerged.

3 Basic Idea

The basic idea is illustrated in cartoon form in Figure 1 . Earthquakes
emit seismic energy that travels out to the stations at the surface. At first,
we assume an intervening velocity structure, typically one dimensional, and
use that to predict traveltimes to each station. If the model is correct the
difference between predicted and observed arrivals will be small. If waves pass
through anomalous structures, however, travel times will be perturbed and
the differences will become significant. Seismic tomography often involves
using the travel time residuals to reconstruct anomalies where large numbers
of raypaths overlap at varying angles. It can be shown that with complete
coverage from all angles, the anomalous body can be reconstructed perfectly.
This ideal situation is never achieved in real analyses, of course.

4 Inversion approach

Nearly all seismic tomography is founded on a linearization of the highly
non-linear seismic inversion problem. In equation (1) it was noted that the
raypath depended on the velocity model which also depends on the raypaths
in the inversion. Furthermore, earthquake locations are also derived using the
velocity models, so this introduces an additional non-linearity. To circumvent
the nonlinearity we usually introduce a linearization of the inversion and
iterate a sequence of linear inversion in the hopes that we will converge to
the correct non-linear solution. This is accomplished by assuming we have
a reasonably close initial guess to the correct solution and then seeking a
small perturbation which will drive the model closer to the correct, final
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Figure 1: Tomographic inversion of a Magma Chamber. The grid in the
subsurface represents the grid used for the tomographic inversion. The two
rays on the right traverse through the anomalous magma body. those on the
left do not, so they do not contribute changing the model. The blocks high-
lighted are the ones that are perturbed sequentially in row-action methods
of inversion.
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model. The sequence of calculations involves making an initial (typically
1D) model, finding the raypaths in that model, perturbing the (3D) model
so the travel times are minimized, adding new perturbations to the first model
and iterating. Once the new model is derived, new earthquake locations are
calculated and the process is repeated. These iterations usually converge in
a few to several steps. Convergence is determined when the models change
by a very small amount between iterations and travel time differentials get
small.

The inversion described above is typically discretized (digitized) by as-
suming the earth is composed of blocks, or nodes of points, where the ve-
locity is defined. The integrals in Equation (1) can be discretized and cast
in matrix form. The matrices involved include a data design matrix which
describes the way the raypaths intersect the earth model and the data (travel
time perturbations), i.e. the differences between the observed travel times
and calculated times through the current model. New, upgraded, models
are derived by least-squares methods. Since the matrices are very sparse,
specialized methods have been developed to store the data and arrive at an
inverse solution with great speed.

The inversion described above is typically discretized (digitized) by as-
suming the earth is composed of blocks, or nodes of points, where the ve-
locity is defined. The integrals in Equation (1) can be discretized and cast
in matrix form. The matrices involved include a data design matrix which
describes the way the raypaths intersect the earth model and the data (travel
time perturbations), i.e. the differences between the observed travel times
and calculated times through the current model. New, upgraded, models
are derived by least-squares methods. Since the matrices are very sparse,
specialized methods have been developed to store the data and arrive at an
inverse solution with great speed.

5 Methodology and Inversion

Once all the data are collected and the relationship of the intersecting ray
paths with the target region is discretized and digitized, a set of matrices
is typically set up to solve the so called inverse problem: what earth model
would give rise to the travel time residuals observed. If we represent the
earth model as a vector of perturbations (anomalies), x, the interaction of
the raypaths with the earth as A, the array of travel time residuals, ∆t, one
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can relate the earth to the residuals by the simple linear relationship,

Ax = b (5.1)

This matrix equation is solved using a variety of methods depending on
the structure of the matrices, although the specific approach usually does not
have a large impact on the resulting images.

6 Synthetic Example using R

Set up libraries used in the following:

> library(sp)

> library(splancs)

Spatial Point Pattern Analysis Code in S-Plus

Version 2 - Spatial and Space-Time analysis

> library(RTOMO)

GEOmap is loaded

RSEIS is loaded

Next we create a synthetic target region and grid where the earthquakes
and stations will be distributed.

We set the background velocity to 4.5 km/sec and we create 2 irregular
anomalies, one with a 10 percent positive perturbation and one with negative
5 percent anomaly. This is totally arbitrary.

> NX = 100

> NY = 100

> xo = seq(from=1, to=NX, by=1)

> yo = seq(from=1, to=NY, by=1)

> ### v (or s) model

>

> V = 4.5

> v1 = V+0.1*V

> v2 = V-.05*V

> rad = 20
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The travel times are calculated by using the slowness in seismology, or
1/velocity.

> MOD = matrix(1/V, ncol=NX, nrow=NY)

> PHANT = matrix(0, ncol=NX, nrow=NY)

> M = meshgrid(xo, yo)

Two arbitrary, complex anomalous bodies are created. I made these by
clicking on the screen a then saving the points:

> A1=list()

> A1$x=c(21.4380148625385,22.9678921197393,25.2038665725713,29.0874011485427,

31.5587413332518,40.7380048764569,40.7380048764569,42.0325164017807,

46.1514167096291,50.0349512856005,45.2099537821209,29.2050840144812,

29.7934983441739,33.6770329201453,28.6166696847886,21.9087463262926,

11.6703369896408,8.96363107305464,17.083748822813,15.3185058337351,

7.08070521803821,11.5526541237022,14.2593600402883,15.7892372974892,

17.6721631525056,19.0843575437679)

> A1$y=c(55.6872037914692,57.8199052132701,59.0047393364929,

59.0047393364929,55.2132701421801,58.5308056872038,

61.9668246445498,70.6161137440758,74.7630331753555,79.8578199052133,

83.175355450237,88.2701421800948,83.5308056872038,81.9905213270142,

77.4881516587678,77.3696682464455,78.909952606635,71.3270142180095,

70.1421800947867,66.1137440758294,54.5023696682464,49.4075829383886,

51.6587677725119,57.1090047393365,55.0947867298578,52.1327014218010)

> ## A2 = locator(type='o', col='black')

>

> A2=list()

> A2$x=c(90.6355400343922,82.750788016511,72.9831101436132,81.2209107593101,

78.8672534405396,63.9215294663467,55.8014117165883,47.0928796371373,

65.6867724554246,70.9825014226583,57.9197033034818,45.9160509777521,

48.2697082965226,64.9806752597934,72.3946958139206,76.6312789877075,

81.1032278933716,74.8660359986297,86.7520054584209,92.7538316212857)

> A2$y=c(39.5734597156398,50.4739336492891,52.60663507109,49.0521327014218,

46.0900473933649,46.563981042654,45.260663507109,35.9004739336493,

37.914691943128,33.175355450237,25.5924170616114,24.2890995260664,

16.8246445497630,15.7582938388626,11.6113744075829,9.12322274881517,

19.4312796208531,24.7630331753554,30.2132701421801,31.3981042654028)

6



These bodies are saved as geometric outlines and all the points inside the
bodies are given the perturbation assigned. We used the program inout to
extract which points of the model were inside each body.

> mypoly = as.points(as.vector(A1$x) , as.vector(A1$y))

> mypoints = as.points(as.vector(M$x),as.vector(M$y))

> INTEMP1 = inout(mypoints, mypoly, bound=TRUE )

> mypoly = as.points(as.vector(A2$x) , as.vector(A2$y))

> INTEMP2 = inout(mypoints, mypoly, bound=TRUE )

> INTEMP = INTEMP1 | INTEMP2

> MOD[INTEMP1] = 1/v1

> MOD[INTEMP2] = 1/v2

> ZEE = t(MOD)

> image(xo, yo, ZEE, col=terrain.colors(100) )

7 Station Distribution

Make the stations:

> stax = runif(20, min=1, max=100)

> stay = runif(20, min=1, max=100)

> image(xo, yo, ZEE, col=terrain.colors(100) )

> points(stax, stay, pch=6, col='blue')

8 Event (source) Distribution

Make the randomly distributed earthquakes (sources).

> NEV = 200

> evx = runif(NEV, min=1, max=100)

> evy = runif(NEV, min=1, max=100)

> #### get random radii for earthquake magnitude

> rads = rnorm(NEV, m=50, s=10)
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Figure 2: Tomographic Phantom (Synthetic model)
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Figure 3: (Random) Station Distribution
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Figure 4: (Random) Event Distribution
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> image(xo, yo, ZEE, col=terrain.colors(100) )

> points(evx, evy, pch=8, col='red')

Here we estimate which stations record each event by using the radius
(magnitude) of the event:

> image(xo, yo, ZEE, col=terrain.colors(100) )

> points(evx, evy, pch=8, col='red')

> for(i in 1:length(evx))

{

print(paste(sep=' ', "working on ", i))

dis = sqrt( (evx[i]-stax)^2+(evy[i]-stay)^2)

w = which(dis<rads[i])

if(length(w)>1)

{

segments(evx[i], evy[i], stax[w], stay[w])

}

}

9 Prepare the Matrix

Determine the intersection of the raypaths with the model. In 2D this is just
the length of the raypath in the ith block.

> COV = list()

> k = 0

> for(i in 1:length(evx))

{

print(paste(sep=' ', "working on ", i))

dis = sqrt( (evx[i]-stax)^2+(evy[i]-stay)^2)

w = which(dis<rads[i])

if(length(w)>1)

{

segments(evx[i], evy[i], stax[w], stay[w])

for(j in 1:length(w))

{
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Figure 5: Raypath Distribution
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RAP = get2Drayblox(evx[i], evy[i],stax[w[j]] ,stay[w[j]] ,

xo, yo, NODES=TRUE, PLOT=FALSE)

slns = MOD[cbind(RAP$ix, RAP$iy)]

tt = slns*(RAP$lengs)

k = k+1

COV[[k]] = list(RAP=RAP, tt=tt)

}

}

}

Add Noise to the data:

> NOISE = 0.001

> for(i in 1:length(COV))

{

COV[[i]]$noise = rnorm(n=1, m=0, sd=NOISE)

}

Now the synthetic data has been created. The data is stored in memory
as lists.

The list named COV has the coverage information. That is the travel
times and the raypath coverage. The travel times are in a vector called tt.
these are the ‘true’ arrival times. The raypaths are stored in a second list
called RAP. It has the coordinated of each (straight) raypath transecting the
model.

10 Inversion by Backprojection

Here we solve the problem,
∆t = As

Here we solve the tomography problem via iterative backprojection. This
is the algorithm that I believe can be made parallel.
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10.1 Inversion by backprojection

Do 30 iterations, include noise. At each step use the current model and
upgrade the velocity.

> PHANT = matrix(0, ncol=NX, nrow=NY)

> for(j in 1:30)

{

print(paste("Iteration", j))

for(i in 1:length(COV))

{

###

oldsln = as.vector(PHANT[cbind(COV[[i]]$RAP$ix, COV[[i]]$RAP$iy)])

slns = (1/V)*(1+oldsln)

t1 = slns*COV[[i]]$RAP$lengs

DT = (COV[[i]]$tt - t1) + COV[[i]]$noise

PHANT[cbind(COV[[i]]$RAP$ix, COV[[i]]$RAP$iy)] =

PHANT[cbind(COV[[i]]$RAP$ix, COV[[i]]$RAP$iy)]+

DT*COV[[i]]$RAP$lengs/(sum(COV[[i]]$RAP$lengs))

}

}

To illustrate, here is inversion by backprojection using only 1 iteration:

> PHANT1 = matrix(0, ncol=NX, nrow=NY)

> for(i in 1:length(COV))

{

t1 =(1/V)*COV[[i]]$RAP$lengs

DT = (COV[[i]]$tt - t1) + COV[[i]]$noise

PHANT1[cbind(COV[[i]]$RAP$ix, COV[[i]]$RAP$iy)] =

PHANT1[cbind(COV[[i]]$RAP$ix, COV[[i]]$RAP$iy)]+

DT*COV[[i]]$RAP$lengs/(sum(COV[[i]]$RAP$lengs))
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Figure 6: Synthetic phantom - this is the “Truth”

}

Display results: This is the original phantom:

> image(xo, yo, ZEE, col=tomo.colors(100) )

> polygon(A1)

> polygon(A2)

This is the backprojected image with only one iteration:

> image(xo, yo, t(PHANT1), col=tomo.colors(100) )

> polygon(A1)

> polygon(A2)
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Figure 7: Tomographic inversion result with one backprojected iteration.
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Figure 8: Tomographic inversion result, 30 iterations. This is the image seen
through the inversion process.

This is the backprojected image:

> image(xo, yo, t(PHANT), col=tomo.colors(100) )

> polygon(A1)

> polygon(A2)
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