
Filter and Deconvolution

Jonathan M. Lees
University of North Carolina, Chapel Hill

Department of Geological Sciences
CB #3315, Mitchell Hall

Chapel Hill, NC 27599-3315
email: jonathan.lees@unc.edu

ph: (919) 962-1562

July 22, 2012

1

1 Signal Package

There is a package in R called signal that replicates the functionality of the signal processing toolbox
in MATLAB. There are many features in the signal package that are useful and can be applied in
slightly different ways than the implementation presented in RSEIS.

For example, consider the creation and application of a butterworth filter. In signal,

Figure 1:

library(RSEIS)

library(signal)

bf <- butter(3, 0.1) # 10 Hz low-pass filter

t <- seq(0, 1, len = 100) # 1 second sample

x <- sin(2*pi*t*2.3) + 0.25*rnorm(length(t))# 2.3 Hz sinusoid+noise

y <- filtfilt(bf, x)

z <- filter(bf, x) # apply filter

zz = butfilt(x, fl=0, fh=10, deltat=1/100, type="LP" , proto="BU")

plot(t, x, type='l')

lines(t, y, col="red")

lines(t, z, col="blue")

lines(t, zz, col="purple")

legend("bottomleft", legend = c("data", "filtfilt", "filter", "butfilt"),

pch = 1, col = c("black", "red", "blue", "purple"), bty = "n")

Figure 2:

library(signal)

bf <- butter(2, 0.1) # 10 Hz low-pass filter

t <- seq(0, 1, len = 100) # 1 second sample

x <- rep(0, times=length(t))

x[floor(length(x)/2)] = 1

y <- filtfilt(bf, x)

z <- filter(bf, x) # apply filter

zz = butfilt(x, fl=0, fh=10, deltat=1/100, type="LP" , proto="BU", npoles=2)

plot(t, x, type='l')

lines(t, y, col="red")

lines(t, z, col="blue")

2

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

t

x

data
filtfilt
filter
butfilt

Figure 1: Butterworth filter applied with filtfilt, filter and butfilt.

3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

x

data
filtfilt
filter
butfilt

Figure 2: Butterworth filter applied to an impulse: Impulse response functions.

lines(t, zz, col="purple")

legend("bottomleft", legend = c("data", "filtfilt", "filter", "butfilt"),

pch = 1, col = c("black", "red", "blue", "purple"), bty = "n")

Figure 3:

library(signal)

10 Hz low-pass filter

t <- seq(0, 1, len = 100) # 1 second sample

x <- rep(0, times=length(t))

4

x[floor(length(x)/2)] = 1

bf2 <- butter(2, 0.1)

y2 <- filtfilt(bf2, x)

bf3 <- butter(3, 0.1)

y3 <- filtfilt(bf3, x)

bf4 <- butter(4, 0.1)

y4 <- filtfilt(bf4, x)

plot(t, x, type='l')

lines(t, y2, col="red")

lines(t, y3, col="blue")

lines(t, y4, col="purple")

legend("bottomleft", legend = c("data", "2-poles", "3-poles", "4-poles"),

pch = 1, col = c("black", "red", "blue", "purple"), bty = "n")

Figure 3:

library(signal)

10 Hz low-pass filter

t <- seq(0, 1, len = 100) # 1 second sample

x <- rep(0, times=length(t))

x[(floor(0.25*length(x))):(floor(0.75*length(x)))] = 1

bf2 <- butter(2, 0.1)

y2 <- filtfilt(bf2, x)

bf3 <- butter(3, 0.1)

y3 <- filtfilt(bf3, x)

bf4 <- butter(10, 0.1)

y4 <- filtfilt(bf4, x)

plot(range(t), range(x, y2, y3, y4) , type='n')

lines(t, x, type='l')

lines(t, y2, col="red")

lines(t, y3, col="blue")

lines(t, y4, col="purple")

legend("bottomleft", legend = c("data", "2-poles", "3-poles", "4-poles"),

pch = 1, col = c("black", "red", "blue", "purple"), bty = "n")

5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

x

data
2−poles
3−poles
4−poles

Figure 3: Butterworth filter applied to an impulse: Impulse response functions.

6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

range(t)

ra
ng

e(
x,

 y
2,

 y
3,

 y
4)

data
2−poles
3−poles
4−poles

Figure 4: Butterworth filter applied to an impulse: Impulse response functions.

7

Deconvolution of seismic data can be accomplished by several methods. In this document I will
relate steps to remove the instrutment response of a seismic recording.

2 Poles and Zeros

In package REIS we use the convention originally established in the SAC software system. In SAC
poles and zeros are defined along with a set of scaling parameters that are applied to the traces.
To correctly extract the proper units on the output care must be taken to make sure all the scaling
parameters are applied correctly.

Get some data in the correct RSEIS format.

2.1 Reading the data

There are a number of seismic sensors that are somewhat standard and they are already coded into
REIS . You can access these with the preset program:

If the instrument you are using is not listed among the preset instruments or if you know that
the parameters you need do not match the ones that are preset you can read in your own parameters
by following the simple example:

In the case we just create a character vector with the correct information. Note that these are
chacter strings, as if they were extracted from a file. The program can read these in

Normally instrument response information will be stored in a file on disc, and can be read in and
stored properly ReadSet.Instr. Here is an example reading in the response for a CMG3T instrument:

Rcmg3t = ReadSet.Instr('./data/CMG3T.inst.response')

The number of poles and zeros are decleared and a couple of constnts, such as the normalization
factor and the sensitivity are provided.

To load the preset instruments into an R session the command PreSet.Instr can be used. This
just sets up a list of instruments. The list can be extended by adding new instrument definitions
by the user.

8

[1] "40T" "3T" "L28" "LE3D20s" "GEOSP1"

[6] "CMG3ESPC" "60T" "TRIL120"

3 Deconvolution and Velocity

The seismic instrument recording the data in example data KH was manufactured by the Guralp
company in the UK. The model was a CMG40T commonly used on volcano studies.

3.1 Counts to Volts

The data was recorded on a RefTek data acquisition system (DAS) in the field and signals were
stroed on a flash drive. When the data is recorded the raw data is saved as “counts”. The DAS
manufacturers typically provide a conversion facor for converting DAS counts to volts. This is saved
in the header files of the seismic data and in REIS removed when the data is read into memory.

Data conversion programs JSAC.seis and JSEGY.seis apply the counts-to-volts conversion in-
ternally. If there is concern that this is not being down correctly, the feature can be turned off and
conversion can be down outside of the I/O.

3.2 Decon

data(KH)

Kal = PreSet.Instr()

inst = rep(0, length(KH$STNS))

inst[KH$STNS=="9024"] = 1

VH = VELOCITY.SEISN(KH, sel = 1:length(KH$JSTR), inst = inst, Kal = Kal)

The program VELOCITY.SEISN uses the sel and inst parameters to determine whether to apply
the filters and what instruments should be used. In this case only one traces was there so, it was
fairly simple.

9

3.3 Waterlevel

The method used here to accomplish the deconvolution is called the waterlevel method. Since
deconvolution involves spectral deconvolution small values in the denomenators will result in large,
possibly undesirable fluctuations in the output. Normally this would be considered noise and it is
best to suppress, or regularize, the division by adding a small number to the values so they reach a
stable “waterlevel”. The waterlevel value has a default value of 1e − 08 but this can be changed at
run time. Raising the waterlevel value will result in smoothing of the resultant signal.

4 Acceleration

If it is desired to remove the isntrument response and convert to acceleration the velocity data will
need to be differntiated. Currently there is no function in REIS for doing this automatically at
this time, but differentiation is easily done by any simple differencing.

5 Displacement

If it is desired to remove the instrument response and convert to displacement, the velocity data will
need to be integrated. This combined procedure can be accomplished using the DISPLACE.SEISN
function. This function is executed in the same manner as VELOCITY.SEISN, accept here a filt
should be applied to remove the very long period trends.

data(KH)

Kal = PreSet.Instr()

inst = rep(0, length(KH$STNS))

inst[KH$STNS=="9024"] = 1

DH = DISPLACE.SEISN(KH, sel = 1:length(KH$JSTR), inst = inst, Kal = Kal)

swig(DH, PADDLAB=c("CENTER", "fspread", "HALF", "PREV"))

dis1 = butfilt(DH$JSTR[[1]], fl=1/60, fh=8, deltat=DH$dt[1], type="HP", proto="BU",

npoles=2)

10

100 110 120 130 140 150 160 170 180 190 200

Time (s)

−0.04
−0.02

0
0.02
0.04

 1

100 110 120 130 140 150 160 170 180 190 200

Time (s)

X4930

 2

100 110 120 130 140 150 160 170 180 190 200

Time (s)

X42712

 3

Figure 5: Deconvolved data: top: raw data in volts, center: velocity data in m/s; bottom: displace-
ment data in meters.

JPOST(file="./FIGS/decon2.eps", width=10, height=6)

PLOT.MATN(cbind(KH$JSTR[[1]], VH$JSTR[[1]], DH$JSTR[[1]]), dt = KH$dt[1])

PLOT.MATN(cbind(KH$JSTR[[1]], VH$JSTR[[1]], dis1), dt = KH$dt[1])

units = c("Volts", "m/s", "m")

PLOT.MATN(cbind(KH$JSTR[[1]], VH$JSTR[[1]], dis1), dt = KH$dt[1],

WIN=c(100, 200), units=units)

dev.off()

11

