
RSEIS: Seismic Time Series Analysis in R

Jonathan M. Lees
University of North Carolina, Chapel Hill

Department of Geological Sciences
CB #3315, Mitchell Hall

Chapel Hill, NC 27599-3315
email: jonathan.lees@unc.edu

ph: (919) 962-0695

Abstract

I present several new packages for analyzing seismic data for time series analysis and earthquake focal mech-
anisms. The packages consists of modules that 1) read in seismic waveform data in various common exchange
formats, 2) display data as either event or continuous recordings and 3) performs numerous standard analyses
applied to earthquake and volcano monitoring. REIS is designed as a research tool aimed at investigators who
need to quickly assess large amounts of time-series as they are related to the spatial distribution of geologic struc-
ture and wave propagation. In addition to time series analysis, a spatial mapping program is included that ties
waveforms and radiation patterns to geographical data-base and mapping programs.

1 Waveform Analysis

The waveform module of REIS reads in seismic data in SEGY, SAC, AH, UW and various ASCII formats. The
core of these modules are a set of C programs that pass waveforms back to R and wrappers that create lists of
seismograms. REIS was written primarily for use with continuous data, so the R code is able to sort a large
database consisting of continuous data from several stations and numerous components. Each component of the
waveform database may have a different sample rate and may require very different handling in terms of instrument
de-convolution. Time-windows provided by the user are used to select off parts of the continuous data and rectify
timing so that all traces represent identical time slots. Seismic data (binary or ASCII format) are read into R and
stored in structures that provide a platform for object oriented manipulation of complex information regarding earth
dynamics. In my case, I use this package to investigate exploding volcanoes in Ecuador, Guatemala, Kamchatka and
Italy.

When swig is started an initial, interactive display of the seismic records is presented to the user and a large
array of useful options are available for further processing by buttons that surround the main display but are on
the same graphics device. Some of the routines employed in the REIS package are drawn from packages already
available on the R distribution, for example wavelet transforms - although these have been modified to some extent
to accommodate specific concerns of seismologists. Other modules, like those dealing with focal mechanisms and
radiation patterns are original and will prove useful for investigators searching for patterns of stress distribution in
fault regions.

1

2 Getting started

Start by downloading packages and installing locally in the machine being used. The packages required by REIS in-
clude RPMG , and Rwave, and RFOC if focal mechanisms are going to be inspected.

library(RSEIS)

library(RPMG)

library(Rwave)

2.1 Example: Reventador Volcano Explosion

There several data sets included in the REIS distribution, and these can be loaded with simple calls to data(). For
example,

data(KH, package ='RSEIS')
names(KH)

loads a list structure (KH) that includes wave forms and other important meta-data about the earthquake. To view
this data we call the main program and display the earthquake records stored in memory,

############## code

for interactive set SHOWONLY=FALSE

RPMG::jpng(file='./FIGS/swigfig1.png', width=12, height=9)

swig(KH, SHOWONLY=TRUE)

dev.off()

In this example we display only the vertical component of an explosion of Reventador Volcano (Figure 1). The
buttons shown along the top of the screen are defaults chosen from a large selection of buttons designed to be
useful for analyzing seismic data. To zoom in on the trace, click twice on the trace with the left mouse button, and
then terminate by clicking the middle mouse. (Clicking the middle mouse without left mouse clicks terminates the
interactive session). When finished with REIS windows click the “Done” button to close the window. Avoid using
the small “x” in the corner of the window to terminate because R does not know you have finished yet.

You can view spectra of the signal (SPEC) , spectrograms (SGRAM) and wavelet transforms (WLET). To
illustrate, left click on this trace around t=1200 and t=2000, which windows the harmonic tremor part of this
explosion. Click middle mouse to zoom in, or select one of the buttons at the top to analyze the time series in the
(selected) sub-window. Choose WLET to show the wavelet transform of the harmonic tremor and important time
variations of the volcano during eruption.

2

Figure 1: swig example with Reventador Data

3

The swig program is normally run in interactive mode. In that case, once it is started R is waiting for the
user to select traces and buttons for activating a variety of programs and analysis routines. Selection of traces is
accomplished by clicking on the traces, one or more times depending on what is desired. The program needs to know
what to do with the selections once that process is over, usually by clicking on a button around the perimeter of the
screen. In the next example we will restrict the analysis to just the vertical motion seismic data, at least for now. If
you expand the screen, you can re-arrange the buttons by clicking on the refresh button.

swig is a general analysis program designed for earthquake studies. It uses the RPMG Really Poor Man’s
GUI package to navigate between seismic traces and various analysis procedures. Once the program is started it
waits for the user to select on the screen a variety of operations, determined by the user via the button selection,
STDLAB. In the main event loop, the user may click on the screen with the left mouse button to hi-light specific
traces or windows in the panel. The right mouse click terminates the clicking sequence and a decision is made on
what to do, unless a button has been clicked. Generally, one click selects a specific trace, two clicks specify a trace
and window in that trace. If the clicking is terminated immediately, before a left mouse is clicked, the program stops
and returns NULL. If it terminates after 1 click, a refresh screen command is produced. If there are two or more
clicks, and no button is pressed, the last two clicks are used to zoom in the window.

If a button is clicked, however, the program uses the number of clicks to determine which traces to process and
what to do. For example, if the “PickWin” button is selected, a new swig is spawned where the program gathers
all the components for that station, Usually Vertical, North and East, although in the presence of acoustic channels
they will also be displayed. The new window is called with a new set of Buttons set up specifically for picking the
P, S and Acoustic arrivals. Once that window is finished, focus reverts to the main window and the new picks are
registered. Selecting the “SavePF” button will save the new picks to a file for later use.

As another example, if the user clicks twice in a trace panel, and then selects the WLet Button, a wavelet
transform of the selected time window is calculated and a special new screen is exposed where the user is now
focused until that session is finished by clicking “Done”.

3 Buttons in swig

in REIS buttons are defined as R functions.

Each Button has different properties based on the requirements for that process. Some buttons expect more
than one click to operate properly, others are simple buttons that control the look and feel of the panel. For example,
the “restore” button reverts the panel to its original time window. It can be pressed any time and the window will
redraw and resize. Each button includes a small set of instructions designed to accomplish a specific task. There are
many buttons currently defined, some described below, and there is mechanism for users to make their own on the
fly. This is the great power of RPMG and swig . For user defined buttons see Section 5.

3.1 Example: Coso Geothermal Event

data(GH, package='RSEIS')
numstas = length(GH$STNS)

4

Figure 2: Example of Swig

In this example, taken from the geothermal field at Coso, California, there are 18 stations, most of which have
three components (Vertical, North and East), although there are a couple of stations that are missing some of the
components. This situation is not atypical of earthquake seismic data recorded in the field. If we show only the
vertical component traces (Figure 2), The plot is more manageable and easier to view:

############## code

verts = which(GH$COMPS == "V")

STDLAB = c("DONE", "QUIT", "NEXT","PREV", "zoom in", "zoom out", "refresh", "restore", "SavePF",

"PickWin", "XTR", "SPEC", "SGRAM" ,"WLET", "FILT", "Pinfo", "WINFO", "PTS", "YPIX", "WPIX")

RPMG::jpng(file='./FIGS/swigGH1.png', width=12, height=9)

swig(GH, sel=verts,STDLAB =STDLAB, SHOWONLY=TRUE)

rowBUTTONS(STDLAB, col = 6, pch = 4, cex=1, boxsize = -1)

dev.off()

We see that the stations here are ’mixed up’, i.e. arriving at different times.

5

############## code

vertord = getvertsorder(GH$pickfile, GH)

RPMG::jpng(file='./FIGS/swigGH2.png', width=12, height=9)

swig(GH, sel=vertord$sel, STDLAB =STDLAB, SHOWONLY=TRUE)

dev.off()

A seismic event is usually stored as a combination of waveform information and meta-date associated with the
phase arrivals. Phase arrivals are commonly called “picks” since and analyst had to pick the arrival times from a
representation of the seismic signals, either on a computer or on a paper record. The picks are stored in REIS in a
list structure called pickfile which is an optional component of the name waveform structure. The pickfile structure
is a list comprising several sub-lists with important information associated with stations and the event (earthquake)
source.

names(GH$pickfile)

[1] "PF" "AC" "LOC" "MC" "STAS" "LIP"

[7] "E" "F" "filename" "UWFILEID" "comments" "OSTAS"

[13] "H" "N"

For now we consider the most relevant meta-data,

names(GH$pickfile$STAS)

[1] "tag" "name" "comp" "c3" "phase" "sec" "err" "pol" "flg"

[10] "res" "lat" "lon" "z"

which is a list of vectors, one for each meta-datum and one element each for each station that has meta-data. We
see in this example there are a couple of picks per station, some picks are on the vertical components and some are
on the North component or East, there are P and S-wave phase picks.

data.frame(cbind(name=GH$pickfile$STAS$name, comp=GH$pickfile$STAS$comp, phase=GH$pickfile$STAS$phase, time=GH$pickfile$STAS$sec, lat=GH$pickfile$STAS$lat, lon=GH$pickfile$STAS$lon))

name comp phase time lat lon

1 CE1 V P 48.476 36.0131 -117.8025

2 CE4 V P 48.532 35.9998 -117.8023

3 CE3A V P 48.6 36.0145 -117.8198

4 SM5 V P 48.74 35.99965 -117.830261

5 NV6 V P 48.812 35.9823 -117.8076

6 CE2 V P 48.876 36.0337 -117.7883

7 NV1 V P 49.072 35.9827 -117.7649

8 CE7 V P 49.176 36.053 -117.8046

9 NV10 V P 49.312 35.999056 -117.745194

10 CE8 V P 49.292 36.0512 -117.8387

11 NV4 V P 49.688 36.0477 -117.7403

6

Figure 3: Coso vertical components ordered

7

12 NV5 V P 49.996 36.0839 -117.7536

13 NV2 V P 51.292 36.0255 -117.6213

14 CE1 N S 48.752 36.0131 -117.8025

15 CE4 N S 48.872 35.9998 -117.8023

16 CE3A N S 48.908 36.0145 -117.8198

17 SM5 N S 49.216 35.99965 -117.830261

18 NV6 N S 49.372 35.9823 -117.8076

19 CE2 N S 49.444 36.0337 -117.7883

20 CE6 N S 49.704 36.033665 -117.772726

21 CE7 N S 49.876 36.053 -117.8046

22 CE8 E S 50.316 36.0512 -117.8387

23 NV4 N S 50.984 36.0477 -117.7403

24 NV5 N S 51.28 36.0839 -117.7536

We also store event information:

names(GH$pickfile$LOC)

[1] "yr" "mo" "dom" "hr" "mi" "sec" "jd" "lat"

[9] "lon" "z" "mag" "gap" "delta" "rms" "hozerr"

Using this information we can associate the p-pick with the waveforms, match the timing information and plot
together. finally we add the picks to the section (Figure 4):

############## code

apx = uwpfile2ypx(GH$pickfile)

RPMG::jpng(file='./FIGS/swiggh2.png', width=12, height=10)

swig(GH, sel=vertord$sel, WIN=c(0, 20), APIX=apx, STDLAB =STDLAB, SHOWONLY=TRUE, velfile=VELMOD1D)

dev.off()

Brief documentation for buttons (see 5) in the swig program can be seen by calling the documentation function,
either for a specific button, as in:

PICK.DOC('WLET')

YPIX = Wavelet Transform

or for all possible buttons (not shown here because it is a long list).

source("~/Vignettes/Swig/CODE/Test_chooser.R")

ALLLABS = c("YPIX", "ROT.RT", "JustV", "JustE", "JustN",

"WPIX", "NOPIX", "REPIX", "FILLPIX", "RIDPIX", "SEEPIX",

8

Figure 4: Coso vertical components with arrival picks

9

"iNEXT", "PickWin", "pADDPIX", "Ppic", "Spic", "Apic",

"POLSWITCH", "Pup", "Pnil", "Pdown", "NEXT", "PREV",

"HALF", "CENTER", "MARK", "DOC", "REFRESH", "RESTORE",

"ZOOM.out", "ZOOM.in", "LEFT", "RIGHT", "SCALE", "Xwin",

"PSEL", "FLIP", "PTS", "FILT", "UNFILT", "fspread", "SPEC",

"WWIN", "SGRAM", "WLET", "XTR", "Pinfo", "TSHIFT", "RMS",

"LocStyle", "NA")

RPMG::jpng(file='./FIGS/button_chooser.png', width=12, height=10)

cp = Test_chooser(ALLLABS, nsel = NA)

dev.off()

Test PICK.DOC()

3.2 Example: SunSpots

One standard data set included in the R distribution is the sunspot data, Figure 6. As an example of REIS we
can read this time series in and plot it using the same code introduced above.

data(sunspots)

AA = attributes(sunspots)

starttime=list(yr=AA$tsp[1], jd=1,mo=1,dom=1,hr=0,mi=0,sec=0)

ES = prep1wig(wig=sunspots, dt=1/12, sta="STA", comp="CMP", units="UNITS", starttime=starttime)

EH=prepSEIS(ES)

STDLAB = c("DONE", "zoom in", "zoom out", "refresh", "restore",

"XTR", "SPEC", "SGRAM" ,"WLET", "FILT", "Pinfo")

RPMG::jpng(file='./FIGS/swiggh3.png', width=12, height=10)

xx = swig(EH, STDLAB = STDLAB, SHOWONLY=TRUE)

dev.off()

We next calculate the Multi-Taper Power Spectrum Estimate, (MTM) in Figure 7.

a = list(y=EH$JSTR[[1]], dt=EH$dt[1])

Mspec = mtapspec(ay, adt, klen =1024 , MTP = list(kind = 1,

nwin = 5, npi = 3, inorm = 0))

f = Mspec$freq

amp = Mspec$spec[1:length(f)]

ma = amp

displ = ma

f1 = 0.01

f2 = 1/(2*EH$dt[1])

flag = f >= f1 & f <= f2

plxy = "xy"

RPMG::jpng(file='./FIGS/fdispl3.png', width=12, height=10)

plot(range(f[flag]),range(displ[flag]),type='n',log=plxy,axes=FALSE, xlab="Hz", ylab="Spec")

lines(f[flag], displ[flag], col=1, lty=1)

axis(2, las=2)

10

Figure 5: Panel Showing a variety of buttons that can be added to the main screen of swig. Some of these buttons
require specific information stored in the RSEIS list before they can work properly, e.g. lat-lon-z, arrival time
information (picks), etc.

11

Figure 6: Sunspot data plotted with swig

12

axis(1)

box()

L = locator()

DUMPLOC(L)

L=list()

L$x=c(0.0939105803154482,0.183351679178275,0.350333785192083)

L$y=c(31166.8951116052,7536.36156151748,2370.29538151056)

abline(v=L$x, lty=2, col=grey(0.8))

text(L$x, rep(max(range(displ[flag])), length(L$x)), labels=round((1/L$x)), xpd=TRUE, srt=45, adj=c(0,0))

dev.off()

3.3 Example: Climate Change

As a final example showing how REIS might be used for arbitrary time series, unrelated to seismic data, consider
the famous Delta-O18 time series. By windowing the time sereis and looking at the spectrum one can immediately
see the Milankovitch cycles at (approximately) 100K, 41K and 20K periods.

data(OH, package='RSEIS')
RPMG::jpng(file='./FIGS/OHplot.png', width=12, height=10)

xx = swig(OH, sel=which(OH$COMPS == "V"), STDLAB = STDLAB, SHOWONLY=TRUE)

dev.off()

a = list(y=OH$JSTR[[1]], dt=OH$dt[1])

Mspec = mtapspec(ay, adt, klen =1024 , MTP = list(kind = 1,

nwin = 5, npi = 3, inorm = 0))

f = Mspec$freq

amp = Mspec$spec[1:length(f)]

ma = amp

displ = ma

f1 = 0.01

f2 = 1/(2*EH$dt[1])

flag = f >= f1 & f <= f2

plxy = "xy"

plot(range(f[flag]),range(displ[flag]),type='n',log=plxy,axes=FALSE, xlab="Hz", ylab="Spec")

lines(f[flag], displ[flag], col=1, lty=1)

axis(2, las=2)

axis(1)

box()

L = locator()

DUMPLOC(L)

u = par("usr")

L=list()

L$x=c(0.242745864538716,0.423063797271721,0.447439169221329,0.529320129815409,0.100457805181183)

L$y=c(37.4392793655756,19.0231348719557,15.6564640841027,15.0862607475168,40.6986171075992)

abline(v=L$x, lty=2, col=grey(0.8))

13

Figure 7: MTM power spectrum of Sunspot

14

text(L$x, rep(max(range(displ[flag])), length(L$x)), labels=round(10000*(1/L$x)), xpd=TRUE, srt=45, adj=c(0,0))

3.4 Example: Filters

To illustrate the effects of comparing numerous filters to a specific volcanic explosions event,

data(KH)

dt = KH$dt[1]

y = KH$JSTR[[1]]

y = y[1:50000]

y = y-mean(y)

x = seq(from=0, by=dt, length=length(y))

fl=rep(1/100, 5)

fh=1/c(4,3,2,1, .5)

FILT.spread(x, y, dt, fl = fl, fh = fh, sfact = 1, WIN = NULL, PLOT = TRUE, TIT = NULL, TAPER = 0.05, POSTTAPER = 0.1)

title(main="Filter Spread for Volcano Data")

4 Seismic Data I/O

One of the big problems with seismic data is format and exchange. Unfortunately, seismologists spend an inordinate
amount of time writing codes to reformat data so that it conforms with one or anotehr programs that are commonly
used. Even though there are standard formats defined and in use today, many times these standards are not adhered
to. In many circumstances the original definitions were too restrictive and investigators chose to extend the format in
one way or another, making the standard “non-standard”. A case in point is the SEGY standard and the PASSCAL-
SEGY modification.

Another problem with exchange of seismic data is platform compatibility. To get a good binary format that is
compatible on MAC, Windows and Linux systems is apparently difficult. This is further complicated by differences
in CPU models (e.g. 64 bit versus 32 bit) and other compiler issues. I discovered some years ago that on some
systems a “long int” is misnamed and is actually defined as a “short” This can cause havoc when reading in binary
format data.

A few (somewhat) standard data formats can be read in directly in REIS . These are SAC and SEGY as defined
by PASSCAL-distributed software. I have not written an R function for reading SEED format, but it is probably not
too difficult. Maybe in the future.

I am currently developing a new package called TELES aimed at analysis of teleseismic data extracted from the
IRIS DMC web site. The code has tau-p code for predicting global travel times. This work is still in progress. TELES
currently works in LINUX and MAC environments and can be obtained by contacting me directly.

15

4.1 SAC format

SAC format data can now be read directly using native R binary codes. Earlier I/O functions in package SACR relied
on C-code for the binary input, and this lead to some problems when transferring data across platforms.

The basic code for I/O on SAC data is:

j1 = JSAC.seis(f1, Iendian=1, HEADONLY=TRUE , BIGLONG=FALSE, PLOT=FALSE)

This is a short explanation of the arguments to JSAC.seis.

f1 vector of file names to be extracted and converted

Iendian Endian-ness of the data: 1,2,3: ”little”, ”big”, ”swap”

HEADONLY logical, TRUE= header information only

BIGLONG logical, TRUE=long=8 bytes

PLOT logical, whether to plot the data after reading in

Here f1 is the path to one, or many, file names on the local system. When HEADONLY=TRUE only the SAC
header is returned, and this can be used to set up the input of large digital signal files. The other arguments are
important for making REIS platform independent. Argument Iendian is critical if the data were created on one
platform transferred and read in on another. This argument refers to the “endian-ness” (byte order) of memory in
the computer. In R one can find out the “endian-ness” of the system by accessing the variable

print(.Platform$endian)

[1] "little"

If data is created on the same system on which it is analyzed, and you stay consistent, there should be no problem.
The problem of compatibility arises when data is shared across platforms. If you know what the endian-ness of the
data is from the platform where the data was written in binary format and it is different than your system, use
“swap”. Else, stay consistent. My desktop Linux machine and my laptop MAC are both “little-endian”. My older
SUN computers were “big-endian”.

The BIGLONG argument was introduced because the SAC header has both long and short integer numbers. The
issue stems from the fact that many systems (32 bit) do not recognize the LONG definition and internally convert to
short, i.e. long is defined as 4 bytes. This can create a problem when transferring data created on a 64 bit machine
to a 32 bit machine, and vice versa. So, if the format of the source machine is known - use that for the BIGLONG
argument to indicate how to treat LONG ints.

16

4.2 SEGY format

SEGY formatted data follow the same convention that SAC data do, except that there is slightly different information
in the header.

4.3 WIN format

There is a routine for reading WIN format from Japan, in a separate package called WINR. These codes were written
in C, actually converted from the original FORTRAN code. They are not platform independent and they require
re-compilation when converting from Windows to Linux types of systems. While they work well on my Linux system,
I have had trouble getting them to work on different systems when the endian-ness is changing and the BIGLONG
problems arise. You can try to use these, but I recommend simply converting WIN format to some native R format
and reading the files in REIS .

4.4 UW format

There are many routines in REIS for handling UW format seismic data. UW format comes from the University
of Washington and is used for earthquake event data. In that case many traces are stored for each event, arrival
time information is stored in a pickfile, as well as polarities. Event location and focal mechanism solutions are also
gathered and saved in the RSEIS list. See package RFOC for instructions on how to plot and manipulate focal
mechanisms.

4.5 REIS format

One way to store data is in native REIS format. In this case one might read in the data in one of the previous
formats and follow with a save to a binary R file on the local system. Then consequent I/O is simply a load command
in R . I use this method when I have isolated a specific section of data that I am working on and need to read it for
different purposes on different platforms, or share it with others.

As an example, suppose I have isolated a set of date/times that have events of interest. The event times, or
windows, are stored in a list of day, hr, s1, s2 where s1 and s2 are starting and ending seconds for the event.

A database (DB, see 8) has been created earlier that describes the location of the SEGY files and their content.
I use RSEIS program Mine.seis to extract the selected time window from the full data set. Here is snippet of code:

for(i in 1:length(chugs$day))

{

print(i)

at1 = chugs$day[i]+chugs$hr[i]/24 + chugs$s1[i]/(24*3600)

17

if(chugs$s2[i]>3600) {

at2 = chugs$day[i]+(chugs$hr[i]+1)/24 + (chugs$s2[i]-3600)/(24*3600)

}

else

{

at2 = chugs$day[i]+chugs$hr[i]/24 + chugs$s2[i]/(24*3600)

}

CH = Mine.seis(at1, at2, DB, usta, ucomp)

fnsave = paste(sep=".", Zdate(CH$info, sel=1, t=0), "RCHUGseis")

print(paste(sep=" ", "Working on",fnsave))

save(file=fnsave, CH)

sbut = swig(CH, sel=which(CH$STNS=="CAL"))

}

The Mine.seis call extracts the data from the database and the data is saved in the file fnsave with the REIS list
named “CH”.

In the future this data can be recalled in REIS by loading. Here that operation is put in a loop that breaks
when the QUIT button is clicked in swig

for(i in 1:length(LCHUG))

{

load(LCHUG[i])

sbut = swig(CH, sel=which(CH$STNS=="CAL" & CH$COMPS %in% c(VNE, IJK[c(1,2)])))

if(sbut$but=="QUIT") { break }

}

Data stored in this format can be shared with others using REIS (or other R) software. The advantage is
that the data will work on any platform (Linux, MAC or Windows) seamlessly.

4.6 ASCII format

Data may be stored in simple ASCII format and read in to R . To use swig , however, a proper list should be

5 Defining New Buttons

The program swig attains its real strength from its flexibility in defining new processes and actions to be applied
to time series typical of seismic and geophysical applications. The codes was designed to allow the user maximum

18

control of processing while maintains the organizing principle of structured coding. Information is passed from the
main swig session to defined functions via buttons and instructions contained in the associated button definitions.

One can create new buttons in REIS by defining a function and calling it by clicking. There is a lot of flexibility
in R because of the way data can be stored in expandable lists.

In REIS the basic structure is list with station names, component names, timing information and digital signal
data. This data structure can be passed and modified by buttons in REIS . The basic function has two arguments,
typically called, “nh” and “g” in my codes. These are passed into the button definition, acted upon and then returned,
maybe in some modified form. Most Buttons do not modify the waveforms structures, but some do, like the filtering
functions.

5.1 Button example

As an example of a case that does change the waveforms, consider the BUTTON that takes takes several clicks on
traces and reverses polarity (flip selected traces). The definition of this function is:

FLIP<-function(nh, g)

{

Nclick = length(g$zloc$x)

if(Nclick>1)

{

nc = 1:(Nclick-1)

lnc = length(nc)

ypick = length(g$sel)-floor(length(g$sel)*g$zloc$y[nc])

ipick = unique(g$sel[ypick])

cat("FLIP: pwig POLARITY REVERSED: "); cat(ipick, sep=" "); cat("\n")

for(JJ in 1:length(ipick))

{

jtr = ipick[JJ]

nh$JSTR[[jtr]] = (-1)*nh$JSTR[[jtr]]

}

}

else

{

cat("FLIP: No traces selected: Try Again"); cat("\n")

}

g$zloc = list(x=NULL, y=NULL)

g$action = "replace"

invisible(list(NH=nh, global.vars=g))

}

19

Once the FLIP function is defined (and sourced) it can be added to the vector of buttons and executed within
the swig session. The number of clicks and their locations are passed to the button definition via the “g” (global
parameter) list. The “g” list contains many attributes that control the plotting and appearance of the plot. It has
the selection vector “sel” that indicates which traces are plotted from the “nh” structure.

A signal called“action”is returned to swig to convey what to do with the returning changed parameters. Currently
there are seven action signals that can be sent back to the swig main code.

The action options are:

continue Default Action

donothing Do nothing in the main code (commonly used)

break Break out of the main loop

replot Replot the main panel

replace Replace the current nh list with the modified list

revert Revert back to the original nh data prior to changes

exit Exit the program

Many defined buttons depend on the number and location of clicks on the screen. The button may have some
logic embedded that has to be tested or vetted prior to execution to avoid crashes. Some buttons require, for
example, that a time-window be defined on each traces prior to analysis. In that case there must be an even number
of legitimate clicks to proceed. a good button will test for possible misuse before proceeding with the analysis. If the
number of location of clicks is somehow incorrect, a warning should be issued and a “donothing” action command
returned to swig.

The main ingredients of button definition in swig are a few parameters that can be used to extract and manipulate
the passing structures. First is the number of clicks passed, here extracted by accessing the output of the locator
function stored in the “g” list as zloc:

Nclick = length(g$zloc$x)

Since the last click saved in zloc is the click on the button itself, it is discarded and only the first (Nclick-1)

points are used. In the FLIP function defined above ypick are the panel locations of the clicks and ipick are the
selected traces associated with those clicks. The JJ loop selects only those traces indicated and reverses their polarity.
The g$action indicates that on return the traces are to be replaced by the list in function.

If it is necessary to open a new plotting device it might be useful to store the dev number for later use, passing
it through the “g” list. In this small code snippet I check to see if this device is already available. If not open a new
device.

if(PLOT)

{

20

if(is.null(g$ternmatDEV))

{

dev.new()

g$ternmatDEV =dev.cur()

}

else

{

dev.set(g$ternmatDEV)

}

And this should be finished with setting the device focus back to the main window when leaving the function
environment:

dev.set(g$MAINdev)

5.2 Accessing Button Functionality

Finally, I show here how to install and access the functions described in the previous section on defining a new button.

Once a button such as FLIP is defined and sourced or pasted into an R session, it can be called from within a
swig session by adding it to the list of available buttons. The standard (default) list of buttons is defined as a vector
of functions called STDLAB:

STDLAB = c("REPLOT","DONE", "SELBUT", "PSEL","LocStyle",

"ZOOM.out", "ZOOM.in", "LEFT", "RIGHT", "RESTORE", "Pinfo","WINFO",

"XTR", "SPEC", "SGRAM" ,"WLET", "FILT", "UNFILT", "SCALE", "Postscript")

Naturally, STDLAB can be replaced by an alternative, although to insure that there are at least some buttons
always present for navigation, a minimal list of buttons is always present in swig . To see these try executing:

swig(GH, STDLAB = c("TEST"))

these are the so called “fixedbuttons”. (Note that since TEST is not a function, wehen it is pushed a warning
comes up indicating that.)

"REPLOT", "DONE", "QUIT", "SELBUT"

and the fixed “pick” buttons:

21

"NOPIX", "REPIX"

The REPLOT button is always located on the upper right hand of swig so the screen can be re-drawn and the
buttons re-established. If the screen is resized, the buttons may appear to go off the end of the plot and they will
need to be replotted. See section ReSizing below.

Once user defined buttons are set (like FLIP above) they can be added to the list by calling:

swig(GH, PADDLAB = c("FLIP"))

The FLIP function can be accessed by first clicking on a one of the (traces) panels in swig and then clicking the
FLIP button. Control is transferred to the user defined function, the GH list is modified, the action is replace, so the
list is replaced and and control is returned to the swig environment for further user interaction.

6 ReSizing

R sessions generally are not especially aware of the graphics environments. When a device is called and plotting
actions are determined the device characteristics are used to set the scales and units of the screen. If the user resizes
the screen after the plot has been made, R may not be able to adjust properly. In that case the user should replot
the existing plot so the correct aspect ratio and other coordinate systems can be set properly.

In swig this can be accomplished easily by clicking the REPLOT button at any time. The figure will be recast
and the buttons will be redisplayed correctly.

7 Bugs and Problems

If there are more buttons defined than can fit on the top and bottom rows of swig or any GUI defined using package
RPMG , they will go off the edge of the screen on the lower left side and disappear. I may fix this in the future,
perhaps by assigning a button panel over the top and keep all defined buttons there. This would entail a major
change and I have not considered implementing this at the present time.

If a button is depressed and careful error handling has not been established within the button, the swig session
may crash. Since the user defines the action of the buttons it is virtually impossible to protect against this. I
recommend coders pay attention to error handling.

8 Setting up an RSEIS Database

Often we have large datasets of continuous seismic data on several stations and several components. This would
be the case for a temporary PASSCAL experiment, where data comes as station-component files in SEGY format,

22

typically in time slices of 1 hour depending on the acquisition parameters. The files, as they are retrieved in the field
using PASSCAL and REFTEK software are ordered by day or DAS number or some other method. and they are
stored in some directory on the computer or disk.

If the station and component names have been written in the data headers, a simple REIS data base system
can be created for easy access to the full data set.

8.1 DB Example

############# set directory

path = '/home/lees/Site/Santiaguito/SG09'
pattern = "R0*"

get DB information

XDB = makeDB(path, pattern, kind =1)

Then data can be extracted by time, station and component. In this case 24 hours from one component.

select a station

usta = "CAL"

acomp = "V"

extract 24 hours worth of data

JJ = getseis24(DB, 2009, 2, usta, acomp, kind = 1)

23

